
Oracle® Database
JDBC Developer's Guide

19c
E96471-02
February 2019

Oracle Database JDBC Developer's Guide, 19c

E96471-02

Copyright © 1999, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Tulika Das

Contributing Authors: Brian Martin, Venkatasubramaniam Iyer, Elizabeth Hanes Perry, Brian Wright,
Thomas Pfaeffle

Contributors: Kuassi Mensah, Douglas Surber, Paul Lo, Ed Shirk, Tong Zhou, Jean de Lavarene, Rajkumar
Irudayaraj, Ashok Shivarudraiah, Angela Barone, Rosie Chen, Sunil Kunisetty, Joyce Yang, Mehul
Bastawala, Luxi Chidambaran, Vidya Nayak, Srinath Krishnaswamy, Swati Rao, Pankaj Chand, Aman
Manglik, Longxing Deng, Magdi Morsi, Ron Peterson, Ekkehard Rohwedder, Catherine Wong, Scott Urman,
Jerry Schwarz, Steve Ding, Soulaiman Htite, Anthony Lai, Prabha Krishna, Ellen Siegal, Susan Kraft, Sheryl
Maring

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxiv

Documentation Accessibility xxiv

Related Documents xxiv

Conventions xxv

 Changes in This Release for Oracle Database JDBC Developer's
Guide

Changes in Oracle Database 19c xxx

Part I Overview

1 Introducing JDBC

1.1 Overview of Oracle JDBC Drivers 1-1

1.2 Choosing the Appropriate Driver 1-3

1.3 Feature Differences Between JDBC OCI and Thin Drivers 1-4

1.4 Environments and Support 1-4

1.4.1 Supported JDK and JDBC Versions 1-5

1.4.2 JNI and Java Environments 1-5

1.4.3 JDBC and IDEs 1-5

1.5 Feature List 1-5

2 Getting Started

2.1 Version Compatibility for Oracle JDBC Drivers 2-1

2.2 Verifying a JDBC Client Installation 2-2

2.2.1 Checking the Installed Directories and Files 2-2

2.2.2 Checking the Environment Variables 2-3

2.2.3 Ensuring that the Java Code Can Be Compiled and Run 2-5

2.2.4 Determining the Version of the JDBC Driver 2-5

iii

2.2.5 Testing the JDBC and Database Connection 2-5

2.3 Basic Steps in JDBC 2-7

2.3.1 Importing Packages 2-8

2.3.2 Opening a Connection to a Database 2-8

2.3.3 Creating a Statement Object 2-9

2.3.4 Running a Query and Retrieving a Result Set Object 2-10

2.3.5 Processing the Result Set Object 2-10

2.3.6 Closing the Result Set and Statement Objects 2-11

2.3.7 Making Changes to the Database 2-11

2.3.8 About Committing Changes 2-13

2.3.8.1 Changing Commit Behavior 2-14

2.3.9 Closing the Connection 2-15

2.4 Sample: Connecting, Querying, and Processing the Results 2-15

2.5 Support for Invisible Columns 2-16

2.6 Support for Verifying JSON Data 2-18

2.7 Support for Implicit Results 2-19

2.8 Support for Lightweight Connection Validation 2-21

2.9 Support for Deprioritization of Database Nodes 2-23

2.10 Support for Oracle Connection Manager in Traffic Director Mode 2-23

2.10.1 Modes of Running Oracle Connection Manager in Traffic Director
Mode 2-24

2.10.2 Benefits of Oracle Connection Manager in Traffic Director Mode 2-25

2.10.3 Restrictions for Oracle Connection Manager in Traffic Director Mode 2-27

2.11 Stored Procedure Calls in JDBC Programs 2-27

2.11.1 PL/SQL Stored Procedures 2-28

2.11.2 Java Stored Procedures 2-28

2.12 About Processing SQL Exceptions 2-28

Part II Oracle JDBC

3 JDBC Standards Support

3.1 Support for JDBC 2.0 Standard 3-1

3.1.1 Data Type Support 3-2

3.1.2 Standard Feature Support 3-2

3.1.3 Extended Feature Support 3-2

3.1.4 Standard versus Oracle Performance Enhancement APIs 3-2

3.2 Support for JDBC 3.0 Standard 3-2

3.2.1 Overview of Transaction Savepoints 3-3

3.2.1.1 About Creating a Savepoint 3-3

3.2.1.2 About Rolling Back to a Savepoint 3-4

iv

3.2.1.3 About Releasing a Savepoint 3-4

3.2.1.4 About Checking Savepoint Support 3-4

3.2.1.5 Savepoint Notes 3-4

3.2.2 Retrieval of Auto-Generated Keys 3-4

3.2.2.1 java.sql.Statement 3-5

3.2.2.2 Sample Code 3-5

3.2.2.3 Limitations of Auto-Generated Keys 3-6

3.2.3 JDBC 3.0 LOB Interface Methods 3-6

3.2.4 Result Set Holdability 3-6

3.3 Support for JDBC 4.0 Standard 3-6

3.3.1 Wrapper Pattern Support 3-7

3.3.2 SQLXML Type 3-8

3.3.3 Enhanced Exception Hierarchy and SQLException 3-10

3.3.4 The RowId Data Type 3-10

3.3.5 LOB Creation 3-10

3.3.6 National Language Character Set Support 3-11

3.4 Support for JDBC 4.1 Standard 3-11

3.4.1 setClientInfo Method 3-12

3.4.2 getObject Method 3-13

3.5 Support for JDBC 4.2 Standard 3-14

4 Oracle Extensions

4.1 Overview of Oracle Extensions 4-1

4.2 Features of the Oracle Extensions 4-1

4.2.1 Database Management Using JDBC 4-2

4.2.2 Support for Oracle Data Types 4-2

4.2.3 Support for Oracle Objects 4-3

4.2.4 Support for Schema Naming 4-4

4.2.5 DML Returning 4-4

4.2.6 PL/SQL Associative Arrays 4-5

4.3 Oracle JDBC Packages 4-5

4.3.1 Package oracle.sql 4-5

4.3.2 Package oracle.jdbc 4-10

4.4 Oracle Character Data Types Support 4-10

4.4.1 SQL CHAR Data Types 4-10

4.4.2 SQL NCHAR Data Types 4-10

4.4.3 Class oracle.sql.CHAR 4-11

4.5 Additional Oracle Type Extensions 4-14

4.5.1 Oracle ROWID Type 4-14

4.5.2 Oracle REF CURSOR Type Category 4-15

v

4.5.3 Oracle BINARY_FLOAT and BINARY_DOUBLE Types 4-17

4.5.4 Oracle SYS.ANYTYPE and SYS.ANYDATA Types 4-18

4.5.5 The oracle.jdbc Package 4-21

4.5.5.1 Interface oracle.jdbc.OracleConnection 4-23

4.5.5.2 Interface oracle.jdbc.OracleStatement 4-24

4.5.5.3 Interface oracle.jdbc.OraclePreparedStatement 4-24

4.5.5.4 Interface oracle.jdbc.OracleCallableStatement 4-24

4.5.5.5 Interface oracle.jdbc.OracleResultSet 4-25

4.5.5.6 Interface oracle.jdbc.OracleResultSetMetaData 4-25

4.5.5.7 Class oracle.jdbc.OracleTypes 4-25

4.6 DML Returning 4-27

4.6.1 Oracle-Specific APIs 4-28

4.6.2 About Running DML Returning Statements 4-29

4.6.3 Example of DML Returning 4-29

4.6.4 Limitations of DML Returning 4-30

4.7 Accessing PL/SQL Associative Arrays 4-31

5 Features Specific to JDBC Thin

5.1 Overview of JDBC Thin Client 5-1

5.2 Additional Features Supported 5-1

5.2.1 Default Support for Native XA 5-1

5.2.2 Support for Transaction Guard 5-2

5.2.3 Support for Application Continuity 5-2

6 Features Specific to JDBC OCI Driver

6.1 OCI Connection Pooling 6-1

6.2 Transparent Application Failover 6-1

6.3 OCI Native XA 6-1

6.4 OCI Instant Client 6-2

6.4.1 Overview of Instant Client 6-2

6.4.2 OCI Instant Client Shared Libraries 6-2

6.4.3 Benefits of Instant Client 6-3

6.4.4 JDBC OCI Instant Client Installation Process 6-3

6.4.5 Usage of Instant Client 6-5

6.4.6 About Patching Instant Client Shared Libraries 6-5

6.4.7 Regeneration of Data Shared Library and ZIP files 6-6

6.4.8 Database Connection Names for OCI Instant Client 6-6

6.4.9 Environment Variables for OCI Instant Client 6-9

6.5 About Instant Client Light (English) 6-9

vi

6.5.1 Data Shared Library for Instant Client Light (English) 6-10

6.5.2 Globalization Settings 6-10

6.5.3 Operation 6-11

6.5.4 Installing Instant Client Light (English) 6-11

7 Server-Side Internal Driver

7.1 Overview of the Server-Side Internal Driver 7-1

7.2 Connecting to the Database 7-1

7.3 About Session and Transaction Context 7-3

7.4 Testing JDBC on the Server 7-4

7.5 Loading an Application into the Server 7-4

7.5.1 Using the Loadjava Utility 7-4

7.5.2 Using the JVM Command Line 7-6

Part III Connection and Security

8 Data Sources and URLs

8.1 About Data Sources 8-1

8.1.1 Overview of Oracle Data Source Support for JNDI 8-1

8.1.2 Features and Properties of Data Sources 8-2

8.1.3 Creating a Data Source Instance and Connecting 8-5

8.1.4 Creating a Data Source Instance, Registering with JNDI, and
Connecting 8-6

8.1.5 Supported Connection Properties 8-7

8.1.6 About Using Roles for SYS Login 8-7

8.1.7 Configuring Database Remote Login 8-7

8.1.8 Using Bequeath Connection and SYS Logon 8-9

8.1.9 Setting Properties for Oracle Performance Extensions 8-9

8.1.10 Support for Network Data Compression 8-10

8.2 Database URLs and Database Specifiers 8-11

8.2.1 Support for Internet Protocol Version 6 8-11

8.2.2 Support for HTTPS Proxy Configuration 8-12

8.2.3 Database Specifiers 8-13

8.2.4 Thin-style Service Name Syntax 8-13

8.2.5 Support for Delay in Connection Retries 8-14

8.2.6 TNSNames Alias Syntax 8-14

8.2.7 LDAP Syntax 8-15

vii

9 JDBC Client-Side Security Features

9.1 Support for Oracle Advanced Security 9-2

9.1.1 Overview of Oracle Advanced Security 9-2

9.1.2 JDBC OCI Driver Support for Oracle Advanced Security 9-3

9.1.3 JDBC Thin Driver Support for Oracle Advanced Security 9-4

9.2 Support for Login Authentication 9-4

9.3 Support for Strong Authentication 9-5

9.4 Support for Data Encryption and Integrity 9-5

9.4.1 Overview of JDBC Support for Data Encryption and Integrity 9-5

9.4.2 JDBC OCI Driver Support for Encryption and Integrity 9-6

9.4.3 JDBC Thin Driver Support for Encryption and Integrity 9-7

9.4.4 Setting Encryption and Integrity Parameters in Java 9-8

9.5 Support for SSL 9-10

9.5.1 Overview of JDBC Support for SSL 9-10

9.5.2 About Managing Certificates and Wallets 9-12

9.5.3 About Keys and certificates containers 9-12

9.5.4 Database Connectivity Over TLS Version 1.2 Using JDBC Thin and JKS
9-13

9.5.5 Automatic SSL Connection Configuration 9-13

9.5.5.1 Provider Resolution 9-14

9.5.5.2 Automatic Key Store Type (KSS) Resolution 9-14

9.5.6 Support for Default SSL Context 9-15

9.5.7 Support for Key Store Service 9-16

9.6 Support for Kerberos 9-16

9.6.1 Overview of JDBC Support for Kerberos 9-16

9.6.2 Configuring Windows to Use Kerberos 9-17

9.6.3 Configuring Oracle Database to Use Kerberos 9-17

9.6.4 Code Example for Using Kerberos 9-18

9.7 Support for RADIUS 9-23

9.7.1 Overview of JDBC Support for RADIUS 9-23

9.7.2 Configuring Oracle Database to Use RADIUS 9-23

9.7.3 Code Example for Using RADIUS 9-24

9.8 About Secure External Password Store 9-25

10

Proxy Authentication

10.1 About Proxy Authentication 10-1

10.2 Types of Proxy Connections 10-2

10.3 Creating Proxy Connections 10-3

10.4 Closing a Proxy Session 10-5

10.5 Caching Proxy Connections 10-5

viii

10.6 Limitations of Proxy Connections 10-6

Part IV Data Access and Manipulation

11

Accessing and Manipulating Oracle Data

11.1 Data Type Mappings 11-1

11.1.1 Table of Mappings 11-1

11.1.2 Notes Regarding Mappings 11-4

11.2 Data Conversion Considerations 11-4

11.2.1 Standard Types Versus Oracle Types 11-4

11.2.2 About Converting SQL NULL Data 11-5

11.2.3 About Testing for NULLs 11-6

11.3 Result Set and Statement Extensions 11-6

11.4 Comparison of Oracle get and set Methods to Standard JDBC 11-6

11.4.1 Standard getObject Method 11-7

11.4.2 Oracle getOracleObject Method 11-7

11.4.3 Summary of getObject and getOracleObject Return Types 11-8

11.4.4 Other getXXX Methods 11-10

11.4.4.1 Return Types of getXXX Methods 11-11

11.4.4.2 Special Notes about getXXX Methods 11-11

11.4.5 Data Types For Returned Objects from getObject and getXXX 11-11

11.4.6 The setObject and setOracleObject Methods 11-12

11.4.7 Other setXXX Methods 11-12

11.4.7.1 Input Data Binding 11-13

11.4.7.2 Method setFixedCHAR for Binding CHAR Data into WHERE
Clauses 11-15

11.5 Using Result Set Metadata Extensions 11-16

11.6 About Using SQL CALL and CALL INTO Statements 11-16

12

Java Streams in JDBC

12.1 Overview of Java Streams 12-1

12.2 About Streaming LONG or LONG RAW Columns 12-2

12.2.1 Overview of Streaming LONG or LONG RAW Columns 12-2

12.2.2 LONG RAW Data Conversions 12-3

12.2.3 LONG Data Conversions 12-3

12.2.4 Examples:Streaming LONG RAW Data 12-4

12.2.5 About Avoiding Streaming for LONG or LONG RAW 12-6

12.3 About Streaming CHAR, VARCHAR, or RAW Columns 12-7

12.4 About Streaming LOBs and External Files 12-7

ix

12.5 Relation Between Data Streaming and Multiple Columns 12-8

12.6 Closing a Stream 12-10

12.7 Notes and Precautions on Streams 12-10

12.7.1 About Streaming Data Precautions 12-10

12.7.2 About Using Streams to Avoid Limits on setBytes and setString 12-11

12.7.3 Relation Between Streaming and Row Prefetching 12-12

13

Working with Oracle Object Types

13.1 About Mapping Oracle Objects 13-1

13.2 About Using the Default STRUCT Class for Oracle Objects 13-2

13.2.1 Overview of Using the Struct Class 13-3

13.2.2 Retrieving STRUCT Objects and Attributes 13-3

13.2.3 About Creating STRUCT Objects 13-4

13.2.4 Binding STRUCT Objects into Statements 13-4

13.2.5 STRUCT Automatic Attribute Buffering 13-4

13.3 About Creating and Using Custom Object Classes for Oracle Objects 13-5

13.3.1 Overview of Creating and Using Custom Object Classes 13-6

13.3.2 Relative Advantages of OracleData versus SQLData 13-6

13.3.3 About Type Maps for SQLData Implementations 13-7

13.3.4 About Creating Type Map and Defining Mappings for a SQLData
Implementation 13-7

13.3.4.1 Overview of Creating a Type Map and Defining Mappings 13-8

13.3.4.2 Adding Entries to an Existing Type Map 13-8

13.3.4.3 Creating a New Type Map 13-9

13.3.4.4 About Materializing Object Types not Specified in the Type Map 13-9

13.3.5 About Reading and Writing Data with a SQLData Implementation 13-10

13.3.6 About the OracleData Interface 13-12

13.3.7 About Reading and Writing Data with an OracleData Implementation 13-14

13.3.8 Additional Uses of OracleData 13-16

13.4 Object-Type Inheritance 13-17

13.4.1 About Creating Subtypes 13-17

13.4.2 About Implementing Customized Classes for Subtypes 13-19

13.4.2.1 About Using OracleData for Type Inheritance Hierarchy 13-19

13.4.2.2 About UsingSQLData for Type Inheritance Hierarchy 13-21

13.4.3 About Retrieving Subtype Objects 13-23

13.4.4 Creating Subtype Objects 13-26

13.4.5 Sending Subtype Objects 13-26

13.4.6 Accessing Subtype Data Fields 13-26

13.4.7 Inheritance Metadata Methods 13-28

13.5 About Describing an Object Type 13-28

13.5.1 Functionality for Getting Object Metadata 13-28

x

13.5.2 Retrieving Object Metadata 13-29

14

Working with LOBs and BFILEs

14.1 The LOB Data Types 14-1

14.2 Oracle SecureFiles 14-2

14.3 Data Interface for LOBs 14-3

14.3.1 Streamlined Mechanism 14-3

14.3.2 Input 14-3

14.3.3 Output 14-6

14.3.4 CallableSatement and IN OUT Parameter 14-6

14.3.5 Size Limitations 14-7

14.4 LOB Locator Interface 14-7

14.5 About Working With Temporary LOBs 14-9

14.6 About Opening Persistent LOBs with the Open and Close Methods 14-10

14.7 About Working with BFILEs 14-11

15

Using Oracle Object References

15.1 Oracle Extensions for Object References 15-1

15.2 Retrieving and Passing an Object Reference 15-2

15.2.1 Retrieving an Object Reference from a Result Set 15-2

15.2.2 Retrieving an Object Reference from a Callable Statement 15-3

15.2.3 Passing an Object Reference to a Prepared Statement 15-3

15.3 Accessing and Updating Object Values Through an Object Reference 15-4

16

Working with Oracle Collections

16.1 Oracle Extensions for Collections 16-1

16.1.1 Overview of Oracle Collections 16-1

16.1.2 Choices in Materializing Collections 16-2

16.1.3 Creating Collections 16-2

16.1.4 Creating Multilevel Collection Types 16-3

16.2 Overview of Collection Functionality 16-3

16.3 ARRAY Performance Extension Methods 16-4

16.3.1 About Accessing oracle.sql.ARRAY Elements as Arrays of Java
Primitive Types 16-5

16.3.2 ARRAY Automatic Element Buffering 16-5

16.3.3 ARRAY Automatic Indexing 16-5

16.4 Creating and Using Arrays 16-6

16.4.1 Creating ARRAY Objects 16-6

16.4.2 Retrieving an Array and Its Elements 16-8

xi

16.4.2.1 About Retrieving the Array 16-8

16.4.2.2 Data Retrieval Methods 16-8

16.4.2.3 Comparing the Data Retrieval Methods 16-9

16.4.2.4 Retrieving Elements of a Structured Object Array According to a
Type Map 16-10

16.4.2.5 Retrieving a Subset of Array Elements 16-10

16.4.2.6 Retrieving Array Elements into an oracle.sql.Datum Array 16-11

16.4.2.7 About Accessing Multilevel Collection Elements 16-12

16.4.3 Passing Arrays to Statement Objects 16-13

16.5 Using a Type Map to Map Array Elements 16-14

17

Result Set

17.1 Oracle JDBC Implementation Overview for Result Set Support 17-1

17.2 Resultset Limitations and Downgrade Rules 17-2

17.3 About Avoiding Update Conflicts 17-4

17.4 Row Fetch Size 17-4

17.4.1 Setting the Fetch Size 17-5

17.4.2 Presetting the Fetch Direction 17-5

17.5 About Refetching Rows 17-5

17.6 About Viewing Database Changes Made Internally and Externally 17-6

17.6.1 Visibility versus Detection of External Changes 17-7

17.6.2 Summary of Visibility of Internal and External Changes 17-7

17.6.3 Oracle Implementation of Scroll-Sensitive Result Sets 17-8

18

JDBC RowSets

18.1 Overview of JDBC RowSets 18-1

18.1.1 RowSet Properties 18-2

18.1.2 Events and Event Listeners 18-3

18.1.3 Command Parameters and Command Execution 18-4

18.1.4 About Traversing RowSets 18-4

18.2 About CachedRowSet 18-6

18.3 About JdbcRowSet 18-9

18.4 About WebRowSet 18-10

18.5 About FilteredRowSet 18-12

18.6 About JoinRowSet 18-14

19

Globalization Support

19.1 About Providing Globalization Support 19-1

19.2 NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property 19-3

xii

19.3 New Methods for National Character Set Type Data in JDK 6 19-5

Part V Performance and Scalability

20

Statement and Result Set Caching

20.1 About Statement Caching 20-1

20.1.1 Basics of Statement Caching 20-2

20.1.2 Implicit Statement Caching 20-2

20.1.3 Explicit Statement Caching 20-3

20.2 About Using Statement Caching 20-4

20.2.1 About Enabling and Disabling Statement Caching 20-4

20.2.2 About Closing a Cached Statement 20-6

20.2.3 About Using Implicit Statement Caching 20-7

20.2.3.1 Methods Used in Statement Allocation and Implicit Statement
Caching 20-8

20.2.4 About Using Explicit Statement Caching 20-10

20.2.4.1 Methods Used to Retrieve Explicitly Cached Statements 20-11

20.3 About Reusing Statements Objects 20-11

20.3.1 About Using a Pooled Statement 20-12

20.3.2 About Closing a Pooled Statement 20-12

20.4 About Result Set Caching 20-13

20.4.1 Server-Side Result Set Cache 20-13

20.4.2 Client-Side Result Set Cache 20-14

20.4.2.1 Enabling the Client-Side Result Set Cache 20-14

20.4.2.2 Benefits of Client-Side Result Set Cache 20-15

20.4.2.3 Usage Guidelines in JDBC 20-15

21

Performance Extensions

21.1 Update Batching 21-1

21.1.1 Overview of Update Batching 21-1

21.1.2 Standard Update Batching 21-2

21.1.2.1 Limitations in the Oracle Implementation of Standard Batching 21-2

21.1.2.2 About Adding Operations to the Batch 21-2

21.1.2.3 About Processing the Batch 21-3

21.1.2.4 Row Count per Iteration for Array DMLs 21-4

21.1.2.5 About Committing the Changes in the Oracle Implementation of
Standard Batching 21-4

21.1.2.6 About Clearing the Batch 21-5

xiii

21.1.2.7 Update Counts in the Oracle Implementation of Standard
Batching 21-5

21.1.2.8 Error Handling in the Oracle Implementation of Standard
Batching 21-7

21.1.2.9 About Intermixing Batched Statements and Nonbatched
Statements 21-7

21.1.3 Premature Batch Flush 21-8

21.2 Additional Oracle Performance Extensions 21-9

21.2.1 About Prefetching LOB Data 21-10

21.2.2 Oracle Row-Prefetching Limitations 21-11

21.2.3 About Defining Column Types 21-12

21.2.4 About Reporting DatabaseMetaData TABLE_REMARKS 21-15

22

Support for Reactive Streams Ingestion

22.1 Overview of Java library for Reactive Streams Ingestion 22-1

22.2 Architecture of Java Library for Reactive Streams Ingestion 22-1

22.3 Limitations of Java library for Reactive Streams Ingestion 22-2

23

OCI Connection Pooling

23.1 Background of OCI Driver Connection Pooling 23-1

23.2 Comparison Between OCI Driver Connection Pooling and Shared Servers 23-2

23.3 About Defining an OCI Connection Pool 23-2

23.3.1 Overview of Creating an OCI Connection Pool 23-2

23.3.2 Importing the oracle.jdbc.pool and oracle.jdbc.oci Packages 23-3

23.3.3 Creating an OCI Connection Pool 23-3

23.3.4 Setting the OCI Connection Pool Parameters 23-4

23.3.5 Checking the OCI Connection Pool Status 23-5

23.4 About Connecting to an OCI Connection Pool 23-6

23.5 Sample Code for OCI Connection Pooling 23-7

23.6 Statement Handling and Caching 23-9

23.7 JNDI and the OCI Connection Pool 23-10

24

Database Resident Connection Pooling

24.1 Overview of Database Resident Connection Pooling 24-1

24.2 Enabling Database Resident Connection Pooling 24-2

24.2.1 Enabling DRCP on the Server Side 24-2

24.2.2 Enabling DRCP on the Client Side 24-3

24.3 About Sharing Pooled Servers Across Multiple Connection Pools 24-4

24.4 DRCP Tagging 24-4

xiv

24.5 PL/SQL Callback for Session State Fix Up 24-5

24.6 APIs for Using DRCP 24-7

25

JDBC Support for Database Sharding

25.1 Overview of Database Sharding for JDBC Users 25-1

25.2 About Building the Sharding Key 25-3

25.3 APIs for Database Sharding Support 25-5

25.3.1 The OracleShardingKey Interface 25-5

25.3.2 The OracleShardingKeyBuilder Interface 25-6

25.3.3 The OracleConnectionBuilder Interface 25-6

25.3.4 Other New Classes and Methods for Database Sharding Support 25-7

25.4 JDBC Sharding Example 25-7

26

Oracle Advanced Queuing

26.1 Functionality and Framework of Oracle Advanced Queuing 26-1

26.2 Making Changes to the Database 26-3

26.3 AQ Asynchronous Event Notification 26-3

26.4 About Creating Messages 26-5

26.4.1 Creating Messages 26-5

26.4.2 AQ Message Properties 26-6

26.4.3 AQ Message Payload 26-7

26.5 Example: Creating a Message and Setting a Payload 26-7

26.6 Enqueuing Messages 26-7

26.7 Dequeuing Messages 26-8

26.8 Examples: Enqueuing and Dequeuing 26-10

27

Continuous Query Notification

27.1 Overview of Continuous Query Notification 27-1

27.2 Creating a Registration 27-2

27.2.1 Continuous Query Notification Registration Options 27-3

27.3 Associating a Query with a Registration 27-3

27.4 Notifying Database Change Events 27-4

27.5 Deleting a Registration 27-5

Part VI High Availability

xv

28

Transaction Guard for Java

28.1 Overview of Transaction Guard for Java 28-1

28.2 Transaction Guard Support for XA Transactions 28-2

28.3 How to Use Transaction Guard with XA 28-2

28.4 Transaction Guard for Java APIs 28-3

28.4.1 Retrieving the Logical Transaction Identifiers 28-3

28.4.2 Retrieving the Updated Logical Transaction Identifiers 28-4

28.4.2.1 Registering Event Listeners 28-4

28.4.2.2 Unregistering Event Listeners 28-4

28.5 Complete Example:Using Transaction Guard APIs 28-4

28.6 About Using Server-Side Transaction Guard APIs 28-5

29

Application Continuity for Java

29.1 About Configuring Oracle JDBC for Application Continuity for Java 29-2

29.1.1 Support for Concrete Classes with Application Continuity 29-5

29.2 About Configuring Oracle Database for Application Continuity for Java 29-5

29.3 Application Continuity with DRCP 29-6

29.4 Application Continuity Support for XA Data Source 29-7

29.5 About Identifying Request Boundaries in Application Continuity for Java 29-9

29.6 Support for Transparent Application Continuity 29-9

29.7 Establishing the Initial State Before Application Continuity Replays 29-10

29.7.1 No Callback 29-11

29.7.2 Connection Labeling 29-11

29.7.3 Connection Initialization Callback 29-11

29.7.3.1 Creating an Initialization Callback 29-11

29.7.3.2 Registering an Initialization Callback 29-12

29.7.3.3 Removing or Unregistering an Initialization Callback 29-13

29.7.4 About Enabling FAILOVER_RESTORE 29-13

29.8 About Delaying the Reconnection in Application Continuity for Java 29-15

29.8.1 Configuration Examples Related to Application Continuity for Java 29-16

29.8.1.1 Creating Services on Oracle RAC 29-16

29.8.1.2 Modifying Services on Single-Instance Databases 29-17

29.9 About Retaining Mutable Values in Application Continuity for Java 29-17

29.9.1 Grant and Revoke Interface 29-17

29.9.1.1 Dates and SYS_GUID Syntax 29-17

29.9.1.2 Sequence Syntax 29-18

29.9.1.3 GRANT ALL Statement 29-18

29.9.1.4 Rules for Grants on Mutable Values 29-18

29.10 Application Continuity Statistics 29-19

29.11 About Disabling Replay in Application Continuity for Java 29-20

xvi

29.11.1 How to Disable Replay 29-20

29.11.2 When to Disable Replay 29-21

29.11.2.1 Application Calls External Systems that Should not Be
Repeated 29-21

29.11.2.2 Application Synchronizes Independent Sessions 29-21

29.11.2.3 Application Uses Time at the Middle-tier in the Execution Logic 29-22

29.11.2.4 Application assumes that ROWIds do not change 29-22

29.11.2.5 Application Assumes that Side Effects Execute Once 29-22

29.11.2.6 Application Assumes that Location Values Do not Change 29-23

29.11.3 Diagnostics and Tracing 29-23

29.11.3.1 Writing Replay Trace to Console 29-23

29.11.3.2 Writing Replay Trace to a File 29-24

30

Oracle JDBC Support for FAN Events

30.1 Overview of Oracle JDBC Support for FAN events 30-1

30.2 Safe Draining APIs for Planned Maintenance 30-2

30.3 Installation and Configuration of Oracle JDBC Driver for FAN Events Support
30-3

30.4 Example of Oracle JDBC Driver FAN support for Planned Maintenance 30-4

31

Transparent Application Failover

31.1 Overview of Transparent Application Failover 31-1

31.2 Failover Type Events 31-1

31.3 TAF Callbacks 31-2

31.4 Java TAF Callback Interface 31-2

31.5 Comparison of TAF and Fast Connection Failover 31-3

32

Single Client Access Name

32.1 Overview of Single Client Access Name 32-1

32.2 About Configuring the Database Using the SCAN 32-1

32.3 How Connection Load Balancing Works Using the SCAN 32-2

32.4 Version and Backward Compatibility 32-3

32.5 Using the SCAN in a Maximum Availability Architecture Environment 32-5

32.6 Using the SCAN With Oracle Connection Manager 32-5

Part VII Transaction Management

xvii

33

Distributed Transactions

33.1 About Distributed Transactions 33-1

33.1.1 Overview of Distributed Transaction 33-1

33.1.2 Distributed Transaction Components and Scenarios 33-2

33.1.3 Distributed Transaction Concepts 33-2

33.1.4 About Switching Between Global and Local Transactions 33-4

33.1.5 Oracle XA Packages 33-5

33.2 XA Components 33-6

33.2.1 XADatasource Interface and Oracle Implementation 33-6

33.2.2 XAConnection Interface and Oracle Implementation 33-7

33.2.3 XAResource Interface and Oracle Implementation 33-8

33.2.4 OracleXAResource Method Functionality and Input Parameters 33-9

33.2.5 Xid Interface and Oracle Implementation 33-13

33.3 Error Handling and Optimizations 33-14

33.3.1 XAException Classes and Methods 33-14

33.3.2 Mapping Between Oracle Errors and XA Errors 33-15

33.3.3 XA Error Handling 33-16

33.3.4 Oracle XA Optimizations 33-16

33.4 About Implementing a Distributed Transaction 33-16

33.4.1 Summary of Imports for Oracle XA 33-17

33.4.2 Oracle XA Code Sample 33-17

33.5 Native-XA in Oracle JDBC Drivers 33-21

33.5.1 OCI Native XA 33-22

33.5.2 Thin Native XA 33-23

Part VIII Manageability

34

Database Administration

34.1 Using the Database Administration Methods 34-1

34.2 Using the startup Method 34-2

34.2.1 Database Startup Options 34-2

34.3 Using the shutdown Method 34-3

34.3.1 Database Shutdown Options 34-3

34.3.2 Standard Database Shutdown Process 34-4

34.4 A Complete Example 34-4

xviii

35

Diagnosability in JDBC

35.1 About Logging Feature of Oracle JDBC Drivers 35-1

35.1.1 Overview of Logging Feature of Oracle JDBC Drivers 35-1

35.1.2 Enabling and Using JDBC Logging 35-2

35.1.2.1 About Configuring the CLASSPATH 35-2

35.1.2.2 Enabling Logging 35-2

35.1.2.3 Configuring Logging 35-4

35.1.2.4 Redirecting the Log Output to a File 35-5

35.1.2.5 Using Loggers 35-6

35.1.2.6 Logging Example 35-7

35.1.3 Enabling or Disabling Feature-Specific Logging at Run Time 35-8

35.1.4 Using the Logging Configuration File for Feature-Specific Logging 35-9

35.1.5 Performance, Scalability, and Security Issues 35-10

35.2 Diagnosability Management 35-11

36

JDBC DMS Metrics

36.1 Overview of JDBC DMS Metrics 36-2

36.2 About Determining the Type of Metric to Be Generated 36-2

36.3 About Generating the SQLText Metric 36-3

36.4 About Accessing DMS Metrics Using JMX 36-3

Part IX Appendixes

A JDBC Reference Information

A.1 Supported SQL-JDBC Data Type Mappings A-1

A.2 Supported SQL and PL/SQL Data Types A-3

A.3 About Using PL/SQL Types A-7

A.4 Using Embedded JDBC Escape Syntax A-9

A.4.1 Time and Date Literals A-10

A.4.1.1 Date Literals A-10

A.4.1.2 Time Literals A-11

A.4.1.3 Timestamp Literals A-11

A.4.2 Scalar Functions A-12

A.4.3 LIKE Escape Characters A-13

A.4.4 MATCH_RECOGNIZE Clause A-13

A.4.5 Outer Joins A-14

A.4.6 Function Call Syntax A-14

A.4.7 JDBC Escape Syntax to Oracle SQL Syntax Example A-14

xix

A.5 Oracle JDBC Notes and Limitations A-15

A.5.1 CursorName A-15

A.5.2 JDBC Outer Join Escapes A-15

A.5.3 IEEE 754 Floating Point Compliance A-15

A.5.4 Catalog Arguments to DatabaseMetaData Calls A-16

A.5.5 SQLWarning Class A-16

A.5.6 Executing DDL Statements A-16

A.5.7 Binding Named Parameters A-16

B Oracle RAC Fast Application Notification

B.1 Overview of Oracle RAC Fast Application Notification B-1

B.2 Installing and Configuring Oracle RAC Fast Application Notification B-3

B.3 Using Oracle RAC Fast Application Notification B-3

B.4 Implementing a Connection Pool B-5

C JDBC Coding Tips

C.1 JDBC and Multithreading C-1

C.2 Performance Optimization of JDBC Programs C-2

C.2.1 Disabling Auto-Commit Mode C-2

C.2.2 Standard Fetch Size and Oracle Row Prefetching C-3

C.2.3 About Setting the Session Data Unit Size C-3

C.2.3.1 About Setting the SDU Size for the Database Server C-4

C.2.3.2 About Setting the SDU Size for JDBC OCI Client C-4

C.2.3.3 About Setting the SDU Size for JDBC Thin Client C-4

C.2.4 JDBC Update Batching C-4

C.2.5 Statement Caching C-4

C.2.6 Mapping Between Built-in SQL and Java Types C-5

C.3 Transaction Isolation Levels and Access Modes in JDBC C-6

D JDBC Error Messages

D.1 General Structure of JDBC Error Messages D-1

D.2 General JDBC Messages D-1

D.2.1 JDBC Messages Sorted by ORA Number D-2

D.2.2 JDBC Messages Sorted in Alphabetic Order D-7

D.3 Native XA Messages D-12

D.3.1 Native XA Messages Sorted by ORA Number D-12

D.3.2 Native XA Messages Sorted in Alphabetic Order D-13

D.4 TTC Messages D-13

D.4.1 TTC Messages Sorted by ORA Number D-13

xx

D.4.2 TTC Messages Sorted in Alphabetic Order D-15

E Troubleshooting

E.1 Common Problems E-1

E.1.1 Memory Consumption for CHAR Columns Defined as OUT or IN/OUT
Variables E-1

E.1.2 Memory Leaks and Running Out of Cursors E-1

E.1.3 Opening More than 16 OCI Connections for a Process E-2

E.1.4 Using statement.cancel E-2

E.1.5 Using JDBC with Firewalls E-4

E.1.6 Frequent Abrupt Disconnection from Server E-4

E.1.7 Network Adapter Cannot Establish Connection E-4

E.1.7.1 Oracle Instance Configured with MTS Server Uses Shared Server
E-5

E.1.7.2 JDBC Thin Driver with NIC Card Supporting Both IPv4 and IPv6 E-6

E.1.7.3 Sample Application E-6

E.2 Basic Debugging Procedures E-7

E.2.1 Oracle Net Tracing to Trap Network Events E-8

E.2.1.1 Client-Side Tracing E-8

E.2.1.2 Server-Side Tracing E-10

E.2.2 Third Party Debugging Tools E-11

Index

xxi

List of Tables

1-1 Feature Differences Between JDBC OCI and JDBC Thin Drivers 1-4

1-2 Feature List 1-5

2-1 Import Statements for JDBC Driver 2-8

2-2 Error Messages for Operations Performed When Auto-Commit Mode is ON 2-13

3-1 Key Areas of JDBC 3.0 Functionality 3-2

3-2 BLOB Method Equivalents 3-6

3-3 CLOB Method Equivalents 3-6

4-1 Key Interfaces and Classes of the oracle.jdbc Package 4-21

6-1 OCI Instant Client Shared Libraries 6-2

6-2 Data Shared Library for Instant Client and Instant Client Light (English) 6-10

8-1 Standard Data Source Properties 8-3

8-2 Oracle Extended Data Source Properties 8-3

8-3 Supported Database Specifiers 8-13

9-1 Client/Server Negotiations for Encryption or Integrity 9-6

9-2 OCI Driver Client Parameters for Encryption and Integrity 9-7

9-3 Thin Driver Client Parameters for Encryption and Integrity 9-8

11-1 Default Mappings Between SQL Types and Java Types 11-2

11-2 getObject and getOracleObject Return Types 11-9

12-1 LONG and LONG RAW Data Conversions 12-4

17-1 Visibility of Internal and External Changes for Oracle JDBC 17-7

18-1 The JDBC and Cached Row Sets Compared 18-9

20-1 Comparing Methods Used in Statement Caching 20-4

20-2 Methods Used in Statement Allocation and Implicit Statement Caching 20-8

20-3 Methods Used to Retrieve Explicitly Cached Statements 20-11

21-1 Valid Column Type Specifications 21-14

27-1 Continuous Query Notification Registration Options 27-3

32-1 Oracle Client and Oracle Database Version Compatibility for the SCAN 32-4

33-1 Connection Mode Transitions 33-4

33-2 Oracle-XA Error Mapping 33-15

34-1 Supported Database Startup Options 34-2

34-2 Supported Database Shutdown Options 34-3

A-1 Valid SQL Data Type-Java Class Mappings A-1

A-2 Support for SQL Data Types A-3

A-3 Support for ANSI-92 SQL Data Types A-4

A-4 Support for SQL User-Defined Types A-5

xxii

A-5 Support for PL/SQL Data Types A-5

C-1 Mapping of SQL Data Types to Java Classes that Represent SQL Data Types C-5

D-1 JDBC Messages Sorted by ORA Number D-2

D-2 JDBC Messages Sorted in Alphabetic Order D-7

D-3 Native XA Messages Sorted by ORA Number D-12

D-4 Native XA Messages Sorted in Alphabetic Order D-13

D-5 TTC Messages Sorted by ORA Number D-13

D-6 TTC Messages Sorted in Alphabetic Order D-15

xxiii

Preface

This preface introduces you to the Oracle Database JDBC Developer's Guide
discussing the intended audience, structure, and conventions of this document. A list
of related Oracle documents is also provided.

Audience
The Oracle Database JDBC Developer's Guide is intended for developers of Java
Database Connectivity (JDBC)-based applications. This book can be read by anyone
with an interest in JDBC programming, but assumes at least some prior knowledge of
the following:

• Java

• Oracle PL/SQL

• Oracle databases

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
The following books are available from the Oracle Java Platform group:

• Oracle Database Java Developer's Guide

This book introduces the basic concepts of Java and provides general information
about server-side configuration and functionality. Information that pertains to the
Oracle Java platform as a whole, rather than to a particular product (such as
JDBC) is in this book. This book also discusses Java stored procedures, which
were formerly discussed in a standalone book.

• Oracle Database SQLJ Developer's Guide

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and

Preface

xxiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

The following documents are from the Oracle Server Technologies group:

• Oracle Database Development Guide

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database PL/SQL Language Reference

• Oracle Database SQL Language Reference

Printed documentation is available for sale in the Oracle Store at:

http://shop.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and can be done at

http://www.oracle.com/technetwork/community/join/why-join/index.html

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technetwork/documentation/index.html

The following resources are available:

• Web site for JDBC, including the latest specifications:

http://www.oracle.com/technetwork/java/javase/jdbc/index.htm

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

• Conventions in Text

• Conventions in Code Examples

• Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts
Ensure that the recovery catalog and target
database do not reside on the same disk.

Preface

xxv

http://shop.oracle.com/
http://www.oracle.com/technetwork/community/join/why-join/index.html
http://www.oracle.com/technetwork/documentation/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.htm

Convention Meaning Example

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
data types, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as system-
supplied column names, database objects
and structures, user names, and roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, user names
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to start SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the /
disk1/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate Java, SQL, and command-line statements. Examples are
displayed in a monospace (fixed-width) font and separated from normal text as shown
in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[]
Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ }
Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

|
A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

Preface

xxvi

Convention Meaning Example

...
Horizontal ellipsis points indicate either:

• That we have omitted parts of the code
that are not directly related to the
example

• That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we have
omitted several lines of code not directly
related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics
Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE
Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case
sensitive, you can enter them in lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase
Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus HR/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Conventions for Windows Operating Systems

The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

Preface

xxvii

Convention Meaning Example

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|), and
dash (-). The special character backslash
(\) is treated as an element separator, even
when it appears in quotes. If the file name
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

c:\winnt"\"system32 is the same as C:\WINNT
\SYSTEM32

C:\> Represents the Windows command prompt
of the current hard disk drive. The escape
character in a command prompt is the caret
(^). Your prompt reflects the subdirectory in
which you are working. Referred to as the
command prompt in this manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark (")
special character at the Windows
command prompt. Parentheses and the
single quotation mark (') do not require an
escape character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

C:\>exp HR/hr TABLES=employees QUERY=
\"WHERE job_id='SALESMAN' and salary<1600\"
C:\>imp SYSTEM/password FROM USER=HR
TABLES=(employees, dept)

HOME_NAME
Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_NAMETNSListener

Preface

xxviii

Convention Meaning Example

ORACLE_HOME and
ORACLE_BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components, all
subdirectories were located under a top
level ORACLE_HOME directory that by
default used one of the following names:

• C:\orant for Windows NT
• C:\orawin98 for Windows 98
This release complies with Optimal Flexible
Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that by
default is C:\oracle. If you install the
latest Oracle release on a computer with no
other Oracle software installed, then the
default setting for the first Oracle home
directory is C:\oracle\orann, where nn
is the latest release number. The Oracle
home directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide
for Microsoft Windows for additional
information about OFA compliances and for
information about installing Oracle products
in non-OFA compliant directories.

Go to the ORACLE_BASE\ORACLE_HOME\rdbms
\admin directory.

Preface

xxix

Changes in This Release for Oracle
Database JDBC Developer's Guide

This preface contains:

• Changes in Oracle Database 19c

Changes in Oracle Database 19c
The following are changes in Oracle Database JDBC Developer's Guide for Oracle
Database 19c.

New Features

The following features are new in this release:

• Java library for Reactive Streams Ingestion

See Support for Reactive Streams Ingestion

• Enhancement to Application Continuity

See Support for Transparent Application Continuity

• Support for Easy Connect Naming Syntax (EZConnect format URL) Improvements
Starting with Oracle Database Release 19c, the easy connect naming syntax is
extended and the connection identifier now has the following format:

[[protocol:]//]host1[,host12,host13][:port1][,host2:port2][/
service_name][:server]
[/instance_name][?[wallet_location=<dir>][&ssl_server_cert_dn="LongDN"],
…]

JDBC supports this enhancement and you can use JDBC URLs like the following:

jdbc:oracle:thin:@tcps://example1.com:1522/
wkrfs4xeqva1jcu_sqldev_example2.com?wallet_location=.

See Also:

Easy Connect Naming Enhancements

Changes in This Release for Oracle Database JDBC Developer's Guide

xxx

• Starting with Oracle Database Release 19c, all JDBC properties can be set within
the JDBC URL. For example, you can use the following JDBC URL for enabling
the implicit statement cache size and setting its value to 100:

jdbc:oracle:thin:@(description=
 (address=(protocol=tcps)(port=1522)(host=example1.com))
 (connect_data=(service_name=example2.com)))?
oracle.jdbc.implicitStatementCacheSize=100

• Support for hostname based DN verification
Hostname verification is a part of the HTTPS protocol that involves a server
identity check to ensure that the client is talking to the correct server and has not
been redirected as part of a middle attack. Starting from Oracle Database 19c
release, JDBC drivers support hostname based DN verification.

If the oracle.net.ssl_server_dn_match parameter is set to true, and if
ssl_server_cert_dn parameter value is not provided in the URL, then the driver
uses the hostname of the server to validate the DN in the server certificate. Server
DN matching is used for mutual authentication during the SSL handshake. You
can set it in the following way:

oracle.net.ssl_server_dn_match=true system property

Note:

Hostname based DN verification is enabled by default for EZConnect
format URLs, if you specify the protocol as tcps in the URL.

Deprecated Features

The following features are deprecated, and may be desupported in a future release:

• The following APIs from the OraclePreparedStatement and
OracleCallableStatement classes have been deprecated as part of enhanced
support for Associative Arrays:

– setPlsqlIndexTable

– setPlsqlIndexTableAtName

– registerIndexTableOutParameter

– getOraclePlsqlIndexTable

– getPlsqlIndexTable

• Concrete classes in the oracle.sql package

The concrete classes in the oracle.sql package are deprecated. Use the new
JDBC interfaces instead of these classes.

See MoS Note 1364193.1 for more information about these interfaces.

• The oracle.jdbc.rowset package is deprecated. Oracle recommends that you
use the Standard JDBC RowSet package to replace this feature.

Changes in This Release for Oracle Database JDBC Developer's Guide

xxxi

See Also:

http://docs.oracle.com/javase/9/docs/api/javax/sql/rowset/package-
summary.html

• defineColumnType method

Most of the variants of the defineColumnType method are deprecated. The
supported variants are for:

– LOB to LONG conversions

– Configure the LOB prefetch size

See the JDBC Javadoc for more information.

• CONNECTION_PROPERTY_STREAM_CHUNK_SIZE property

See the JDBC Javadoc for more information.

• Oracle Update Batching

Oracle update batching was deprecated in Oracle Database 12c Release 1 (12.1).
Since Oracle Database 12c Release 2 (12.2), Oracle update batching is a no
operation code (no-op). This means that if you implement Oracle update batching
in your application, using the Oracle Database 19c JDBC driver, then the specified
batch size is not set and results in a batch size of 1. With this batch setting, your
application processes one row at a time. Oracle strongly recommends that you
use the standard JDBC batching if you are using the Oracle Database 19c JDBC
driver.

See Standard Update Batching section for more information.

• EndToEndMetrics related APIs

EndToEndMetrics related APIs are deprecated since Oracle Database 12c release
2 (12.2).

See JDBC DMS Metrics for more information.

Changes in This Release for Oracle Database JDBC Developer's Guide

xxxii

http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/package-summary.html

Part I
Overview

The chapters in this part introduce the concept of Java Database Connectivity (JDBC)
and provide an overview of the Oracle implementation of JDBC. This part provides
basic information about installation and configuration of the Oracle client with
reference to JDBC drivers. This part also covers the basic steps in creating and
running any JDBC application.

Part I contains the following chapters:

• Introducing JDBC

• Getting Started

1
Introducing JDBC

Java Database Connectivity (JDBC) is a Java standard that provides the interface for
connecting from Java to relational databases. The JDBC standard is defined and
implemented through the standard java.sql interfaces. This enables individual
providers to implement and extend the standard with their own JDBC drivers. JDBC is
based on the X/Open SQL Call Level Interface (CLI). JDBC 4.0 complies with the SQL
2003 standard.

This chapter provides an overview of the Oracle implementation of JDBC, covering the
following topics:

• Overview of Oracle JDBC Drivers

• Choosing the Appropriate Driver

• Feature Differences Between JDBC OCI and Thin Drivers

• Environments and Support

• Feature List

1.1 Overview of Oracle JDBC Drivers
In addition to supporting the standard JDBC application programming interfaces
(APIs), Oracle drivers have extensions to support Oracle-specific data types and to
enhance performance.

Oracle provides the following JDBC drivers:

• Thin driver

The JDBC Thin driver is a pure Java, Type IV driver that can be used in
applications. It is platform-independent and does not require any additional Oracle
software on the client-side. The JDBC Thin driver communicates with the server
using Oracle Net Services to access Oracle Database.

The JDBC Thin driver enables a direct connection to the database by providing an
implementation of Oracle Net Services on top of Java sockets. The driver supports
the TCP/IP protocol and requires a TNS listener on the TCP/IP sockets on the
database server.

Note:

Oracle recommends you to use the Thin driver unless you have a feature
that is supported only by a specific driver.

• Oracle Call Interface (OCI) driver

It is used on the client-side with an Oracle client installation. It can be used only
with applications.

1-1

The JDBC OCI driver is a Type II driver used with Java applications. It requires
platform-specific OCI libraries. It supports all installed Oracle Net adapters,
including interprocess communication (IPC), named pipes, TCP/IP, and
Internetwork Packet Exchange/Sequenced Packet Exchange (IPX/SPX).

The JDBC OCI driver, written in a combination of Java and C, converts JDBC
invocations to calls to OCI, using native methods to call C-entry points. These calls
communicate with the database using Oracle Net Services.

The JDBC OCI driver uses the OCI libraries, C-entry points, Oracle Net, core
libraries, and other necessary files on the client computer where it is installed.

OCI is an API that enables you to create applications that use the native
procedures or function calls of a third-generation language to access Oracle
Database and control all phases of the SQL statement processing.

• Server-side Thin driver

It is functionally similar to the client-side Thin driver. However, it is used for code
that runs on the database server and needs to access another session either on
the same server or on a remote server on any tier.

The JDBC server-side Thin driver offers the same functionality as the JDBC Thin
driver that runs on the client-side. However, the JDBC server-side Thin driver runs
inside Oracle Database and accesses a remote database or a different session on
the same database for use with Java in the database.

This driver is useful in the following scenarios:

– Accessing a remote database server from an Oracle Database instance acting
as a middle tier

– Accessing an Oracle Database session from inside another, such as from a
Java stored procedure

The use of JDBC Thin driver from a client application or from inside a server does
not affect the code.

• Server-side internal driver

It is used for code that runs on the database server and accesses the same
session. That is, the code runs and accesses data from a single Oracle session.

The JDBC server-side internal driver supports any Java code that runs inside
Oracle Database, such as in a Java stored procedure, and accesses the same
database. It lets the Oracle Java Virtual Machine (Oracle JVM) to communicate
directly with the SQL engine for use with Java in the database.

The JDBC server-side internal driver, the Oracle JVM, the database, and the SQL
engine all run within the same address space, and therefore, the issue of network
round-trips is irrelevant. The programs access the SQL engine by using function
calls.

Note:

The server-side internal driver does not support the cancel and
setQueryTimeout methods of the Statement class.

Chapter 1
Overview of Oracle JDBC Drivers

1-2

The JDBC server-side internal driver is fully consistent with the client-side drivers
and supports the same features and extensions.

The following figure illustrates the architecture of Oracle JDBC drivers and Oracle
Database.

Figure 1-1 Architecture of Oracle JDBC Drivers and Oracle Database

Oracle Database

JDBC Thin Driver

Java Sockets

OCI C Library

JDBC OCI Driver SOL Engine

PL/SQL Engine

Java Engine

Server-Side Thin Driver

JDBC Server-Side

Internal Driver

KPRB C Library

Oracle Database

Related Topics

• Features Specific to JDBC Thin

• Features Specific to JDBC OCI Driver

• Server-Side Internal Driver

1.2 Choosing the Appropriate Driver
Consider the following when choosing a JDBC driver for your application or applet:

• In general, unless you need OCI-specific features, such as support for non-TCP/IP
networks, use the JDBC Thin driver.

• If you want maximum portability and performance, then use the JDBC Thin driver.
You can connect to Oracle Database from an application using the JDBC Thin
driver.

• If you want to use Lightweight Directory Access Protocol (LDAP) over Secure
Sockets Layer (SSL)/Transport Layer Security (TLS), then use the JDBC Thin
driver.

• If you are writing a client application for an Oracle client environment and need
OCI-driver-specific features, such as support for non-TCP/IP networks, then use
the JDBC OCI driver.

Chapter 1
Choosing the Appropriate Driver

1-3

• For code that runs in the database server and needs to access a remote database
or another session within the same database instance, use the JDBC server-side
Thin driver.

• If your code runs inside the database server and needs to access data locally
within the session, then use the JDBC server-side internal driver to access that
server.

1.3 Feature Differences Between JDBC OCI and Thin
Drivers

Table 1-1 lists the features that are specific either to the JDBC OCI or JDBC Thin
driver in Oracle Database Release 18c.

Table 1-1 Feature Differences Between JDBC OCI and JDBC Thin Drivers

JDBC OCI Driver JDBC Thin Driver

OCI connection pooling NA

NA Default support for Native XA

Transparent Application Failover (TAF) NA

NA Application Continuity

NA Transaction Guard

NA Support for row count per iteration for array
DML

NA SHA-2 Support in Oracle Advanced Security

oraaccess.xml configuration file settings NA

NA Oracle Advanced Queuing

NA Continuous Query Notification

NA Support for the O7L_MR client ability

NA Support for promoting a local transaction to a
global transaction

Note:

• The OCI optimized fetch feature is internal to the JDBC OCI driver and
not applicable to the JDBC Thin driver.

• Some JDBC OCI driver features, inherited from the OCI library, are not
available in the Thin JDBC driver.

1.4 Environments and Support
This section provides a brief discussion of the following topics:

• Supported JDK and JDBC Versions

Chapter 1
Feature Differences Between JDBC OCI and Thin Drivers

1-4

• JNI and Java Environments

• JDBC and IDEs

1.4.1 Supported JDK and JDBC Versions
In Oracle Database 12c Release 2 (12.2.0.1), all the JDBC drivers are compatible with
JDK 8. Support for JDK 8 is provided through the ojdbc8.jarfile.

Related Topics

• Version Compatibility for Oracle JDBC Drivers

• Version Compatibility for Oracle JDBC Drivers

1.4.2 JNI and Java Environments
The JDBC OCI driver uses the standard Java Native Interface (JNI) to call OCI C
libraries. You can use the JDBC OCI driver with Java Virtual Machines (JVMs), in
particular, with Microsoft and IBM JVMs.

1.4.3 JDBC and IDEs
The Oracle JDeveloper Suite provides developers with a single, integrated set of
products to build, debug, and deploy component-based database applications for the
Internet. The Oracle JDeveloper environment contains integrated support for JDBC,
including the JDBC Thin driver and the native OCI driver. The database component of
Oracle JDeveloper uses the JDBC drivers to manage the connection between the
application running on the client and the server.

1.5 Feature List
The following table lists the features and the versions in which they were first
supported for each of the three Oracle JDBC drivers: server-side internal driver, JDBC
OCI driver, and JDBC Thin driver.

Table 1-2 Feature List

Feature Server-Side
Internal

JDBC OCI JDBC Thin

JDK 1.0 7.2.2 7.2.2

JDBC 1.0.2 7.2.2 7.2.2

JDK 1.1.1 8.0.6 8.0.6

JDBC 1.22 (No new features; just minor
revisions)

8.0.6 8.0.6

defineColumnType1 8.0.6 8.0.6

Row Prefetch 8.0.6 8.0.6

Java Native Interface 8.1.6

JDK 1.2 9.0.1 8.1.6 8.1.6

JDBC 2.0 SQL3 Types (BLOB, CLOB, Struct,
Array, REF)

8.1.5 8.1.5 8.1.5

Chapter 1
Feature List

1-5

Table 1-2 (Cont.) Feature List

Feature Server-Side
Internal

JDBC OCI JDBC Thin

Native LOB 8.1.6 9.2.0

Associative Arrays2 10.2.0 8.1.6 10.1.0

JDBC 2.0 Scrollable Result Sets 8.1.6 8.1.6 8.1.6

JDBC 2.0 Updatable Result Sets 8.1.6 8.1.6 8.1.6

JDBC 2.0 Standard Batching 8.1.6 8.1.6 8.1.6

JDBC 2.0 Connection Pooling NA 8.1.6 8.1.6

JDBC 2.0 XA 8.1.6 8.1.6 8.1.6

Server-side Thin driver 8.1.6 NA NA

JDBC 2.0 RowSets 9.0.1 9.0.1

Implicit Statement Caching 8.1.7 8.1.7 8.1.7

Explicit Statement Caching 8.1.7 8.1.7 8.1.7

Temporary LOBs 9.0.1 9.0.1 9.0.1

Object Type Inheritance 9.0.1 9.0.1 9.0.1

Multilevel Collections 9.0.1 9.0.1 9.0.1

oracle.jdbc Interfaces 9.0.1 9.0.1 9.0.1

Native XA 9.0.1 10.1.0

OCI Connection Pooling NA 9.0.1 NA

TAF NA 9.0.1 NA

NLS Support 9.0.1 9.0.1 9.0.1

JDK 1.3 9.2.0 9.2.0 9.2.0

JDK 1.4 10.1.0 9.2.0 9.2.0

JDBC 3.0 Savepoints 9.2.0 9.2.0 9.2.0

New Statement Caching API 9.2.0 9.2.0 9.2.0

ConnectionCacheImpl connection cache NA 8.1.7 8.1.7

Implicit Connection Cache NA 10.1.0 10.1.0

Fast Connection Failover 10.1.0.3 10.1.0.3

Connection Wrapping 9.2.0 9.2.0

DMS 9.2.0 9.2.0

Service Names in URLs 9.2.0 10.2.0

JDBC 3.0 Connection Pooling Properties NA 10.1.0 10.1.0

JDBC 3.0 Updatable BLOB, CLOB, REF 10.1.0 10.1.0 10.1.0

JDBC 3.0 Multiple Open Result Sets 10.1.0 10.1.0 10.1.0

JDBC 3.0 Parameter Metadata 10.1.0 10.1.0 10.1.0

JDBC 3.0 Set/Get Stored Procedures Parameters
by Name

10.1.0 10.1.0 10.1.0

JDBC 3.0 Statement Pooling 10.1.0 10.1.0 10.1.0

Set Statement Parameters by Name 10.1.0 10.1.0 10.1.0

Chapter 1
Feature List

1-6

Table 1-2 (Cont.) Feature List

Feature Server-Side
Internal

JDBC OCI JDBC Thin

End-to-End Tracing 10.1.0 10.1.0

Web RowSet 11.1 10.1.0 10.1.0

Proxy Authentication 10.2.0 10.1.0

JDBC 3.0 Auto Generated Keys 10.2.0 10.2.0

JDBC 3.0 Holdable Cursors 10.2.0 10.2.0 10.2.0

JDBC 3.0 Local/Global Transaction Switching 9.2.0 9.2.0 9.2.0

Run-time Connection Load Balancing NA 10.2.0 10.2.0

Extended setXXX and getXXX for LOBs 10.2.0 10.2.0

XA Connection Cache NA 10.2.0 10.2.0

DML Returning 10.2.0 10.2.0

JSR 114 RowSets 10.2.0 10.2.0

SSL/TLS Encryption 9.2.0 10.2.0

SSL/TLS Authentication 9.2.0 11.1

JDK 5.0 11.1 11.1 11.1

JDK 6 11.1 11.1

JDBC 4.0 11.1 11.1

AES Encryption 11.1

SHA1 Hash 11.1

Radius Authentication 10.2.0 11.1

Kerberos Authentication 11.1

ANYDATA and ANYTYPE types 11.1 11.1

Native AQ 11.1

Query Change Notification 11.1

Database startup and shutdown NA 11.1 11.1

Factory methods for data types 11.1 11.1 11.1

Buffer Cache 11.1 11.1 11.1

Secure Files 11.1 11.1 11.1

Diagnosability 11.1 11.1 11.1

Client Result Cache 11.1.0 18.1

Server Result Cache 11.1 11.1.0 11.1.0

Universal Connection Pool 11.1.0.7.0 11.1.0.7.0

TimeZone Patching 11.2 11.2

Secure Lob Support 11.2 11.2

Lob prefetch Support 11.2 11.2

Network Connection Pool 11.2

Column Security Support 11.2

XMLType Queue Support (AQ) 11.2

Chapter 1
Feature List

1-7

Table 1-2 (Cont.) Feature List

Feature Server-Side
Internal

JDBC OCI JDBC Thin

Notification Grouping (AQ and DCN) 11.2

SimpleFAN 11.2 11.2

Application Continuity 12.1

Transaction Guard 12.1

SQL Statement Translation 12.1

Database Resident Connection Pooling 12.1 12.1

Latest JDBC Standard Support 12.1 12.1

SHA-2 Support in Oracle Advanced Security 12.1

Invisible Columns Support 12.1 12.1

Support for PL/SQL Package Types as
Parameters

12.1 12.1

Support for Monitoring of Database Operations 12.1 12.1

Support for Increased Length Limit for Various
Data Types

12.1 12.1

Implicit Results Support 12.1 12.1

Support for row count per iteration for array DML 12.1

oraaccess.xml configuration file settings 12.1

1 Starting from Oracle Database 12c Release 1 (12.1), most of the variants of this method have been
deprecated. The current versions only enable to perform LOB to LONG conversions and configure the
LOB prefetch size.

2 Associative Arrays were previously known as index-by tables.

Note:

• In the table, NA means that the feature is not applicable for the
corresponding Oracle JDBC driver.

• The ConnectionCacheImpl connection cache feature is deprecated since
Oracle Database 10g.

• The Implicit Connection Cache feature is desupported from this release.

Chapter 1
Feature List

1-8

2
Getting Started

This chapter discusses the compatibility of Oracle Java Database Connectivity (JDBC)
driver versions, database versions, and Java Development Kit (JDK) versions. It also
describes the basics of testing a client installation and configuration and running a
simple application. This chapter contains the following sections:

• Version Compatibility for Oracle JDBC Drivers

• Verifying a JDBC Client Installation

• Basic Steps in JDBC

• Sample: Connecting_ Querying_ and Processing the Results

• Support for Invisible Columns

• Support for Verifying JSON Data

• Support for Implicit Results

• Support for Lightweight Connection Validation

• Support for Deprioritization of Database Nodes

• Support for Oracle Connection Manager in Traffic Director Mode

• Stored Procedure Calls in JDBC Programs

• About Processing SQL Exceptions

2.1 Version Compatibility for Oracle JDBC Drivers
This section discusses the general JDBC version compatibility issues.

Backward Compatibility

Oracle Database 12c Release 2 (12.2.0.1) JDBC drivers are certified with supported
Oracle Database releases (11.x.0.x). However, they are not certified to work with
older, unsupported database releases, such as 10.2.x, 10.1.x, 9.2.x, and 9.0.1.x.

Note:

If you want to use Fast Connection Failover mechanism, then use the 10.2
JDBC driver with Oracle database 10.2. If the database is 10.1, then use
10.1 JDBC driver.

Forward Compatibility

Existing and supported JDBC drivers are certified to work with Oracle Database 12c
Release 2 (12.2).

2-1

Note:

In Oracle Database 12c Release 2 (12.2.0.1), Oracle JDBC drivers no longer
support JDK 6 or earlier versions.

Related Topics

• Oracle Universal Connection Pool Developer’s Guide

• http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-
faq-090281.html

2.2 Verifying a JDBC Client Installation
To verify a JDBC client installation, you must do all of the following:

• Checking the Installed Directories and Files

• Checking the Environment Variables

• Ensuring that the Java Code Can Be Compiled and Run

• Determining the Version of the JDBC Driver

• Testing the JDBC and Database Connection

This section describes the steps for verifying an Oracle client installation of the JDBC
drivers, assuming that you have already installed the driver of your choice. Installation
of an Oracle JDBC driver is platform-specific. You must follow the installation
instructions for the driver you want to install in your platform-specific documentation.

If you use the JDBC Thin driver, then there is no additional installation on the client
computer. If you use the JDBC Oracle Call Interface (OCI) driver, then you must also
install the Oracle client software. This includes Oracle Net and the OCI libraries.

Note:

The JDBC Thin driver requires a TCP/IP listener to be running on the
computer where the database is installed.

2.2.1 Checking the Installed Directories and Files
Installing the Oracle Java products creates, among other things, the following
directories:

• ORACLE_HOME/jdbc

• ORACLE_HOME /jlib

Check whether or not the following directories and files have been created and
populated in the ORACLE_HOME/jdbc directory:

• demo

Chapter 2
Verifying a JDBC Client Installation

2-2

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-faq-090281.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-faq-090281.html

This directory contains a compressed file, demo.zip or demo.tar. When you
uncompress this compressed file, the samples directory and the Samples-
Readme.txt file are created. The samples directory contains sample programs,
including examples of how to use JDBC escape syntax and Oracle SQL syntax,
PL/SQL blocks, streams, user-defined types, additional Oracle type extensions,
and Oracle performance extensions.

• doc

This directory contains the javadoc.zip file, which is the Oracle JDBC application
programming interface (API) documentation.

• lib

The lib directory contains the following required Java classes:

– orai18n.jar and orai18n-mapping.jar

Contain classes for globalization and multibyte character sets support

– ojdbc8.jar and ojdbc8_g.jar

Contain the JDBC driver classes for use with JDK 8

• Readme.txt

This file contains late-breaking and release-specific information about the drivers,
which may not have been included in other documentation on the product.

Check whether or not the following directories have been created and populated in the
ORACLE_HOME /jlib directory:

• jta.jar and jndi.jar

These files contain classes for the Java Transaction API (JTA) and the Java
Naming and Directory Interface (JNDI). These are required only if you are using
JTA features for distributed transaction management or JNDI features for naming
services.

• ons.jar

This JAR file contains classes for Oracle RAC Fast Application Notification. It is
also required for Universal Connection Pool (UCP) features like Fast Connection
Failover, Run-time Load Balancing, Web Session Affinity, and Transaction Affinity.

Related Topics

• Oracle RAC Fast Application Notification

• jta.jar

• jndi.jar

• Oracle Universal Connection Pool Developer’s Guide

2.2.2 Checking the Environment Variables
This section describes the environment variables that must be set for the JDBC OCI
driver and the JDBC Thin driver, focusing on Solaris, Linux, and Microsoft Windows
platforms.

You must set the CLASSPATH environment variable for JDBC OCI or Thin driver. Include
the following in the CLASSPATH environment variable:

Chapter 2
Verifying a JDBC Client Installation

2-3

http://www.oracle.com/technetwork/java/javaee/jta/
http://www.oracle.com/technetwork/java/jndi/index.html

ORACLE_HOME/jdbc/lib/ojdbc8.jar
ORACLE_HOME/jlib/orai18n.jar

Note:

If you use the JTA features and the JNDI features, then you must specify
jta.jar and jndi.jar in your CLASSPATH environment variable.

JDBC OCI Driver

To use the JDBC OCI driver, you must also set the following value for the library path
environment variable:

• On Solaris or Linux, set the LD_LIBRARY_PATH environment variable as follows:

ORACLE_HOME/lib

This directory contains the libocijdbc11.so shared object library.

• On Microsoft Windows, set the PATH environment variable as follows:

ORACLE_HOME\bin

This directory contains the ocijdbc11.dll dynamic link library.

All of the JDBC OCI demonstration programs can be run in the Instant Client mode by
including the JDBC OCI Instant Client data shared library on the library path
environment variable.

JDBC Thin Driver

To use the JDBC Thin driver, you do not have to set any other environment variables.
However, to use the JDBC server-side Thin driver, you need to set permission.

Setting Permission for the Server-Side Thin Driver

The JDBC server-side Thin driver opens a socket for its connection to the database.
Because Oracle Database enforces the Java security model, a check is performed for
a SocketPermission object.

To use the JDBC server-side Thin driver, the connecting user must be granted the
appropriate permission. The following is an example of how the permission can be
granted for the user HR:

CREATE ROLE jdbcthin;
CALL dbms_java.grant_permission('JDBCTHIN', 'java.net.SocketPermission', '*',
'connect');
GRANT jdbcthin TO HR;

Note that JDBCTHIN in the grant_permission call must be in uppercase. The asterisk
(*) is a pattern. You can restrict the user by granting permission to connect to only
specific computers or ports.

Related Topics

• Features Specific to JDBC OCI Driver

• Oracle Database Java Developer’s Guide

Chapter 2
Verifying a JDBC Client Installation

2-4

2.2.3 Ensuring that the Java Code Can Be Compiled and Run
To further ensure that Java is set up properly on your client system, go to the samples
directory under the ORACLE_HOME/jdbc/demo directory. Now, type the following
commands on the command line, one after the other, to see if the Java compiler and
the Java interpreter run without error:

javac

java

Each of the preceding commands should display a list of options and parameters and
then exit. Ideally, verify that you can compile and run a simple test program, such as
jdbc/demo/samples/generic/SelectExample.

2.2.4 Determining the Version of the JDBC Driver
To determine the version of the JDBC driver, call the getDriverVersion method of the
OracleDatabaseMetaData class as shown in the following sample code:

import java.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.OracleDataSource;

class JDBCVersion
{
 public static void main (String args[]) throws SQLException
 {
 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:HR/hr@<host>:<port>:<service>");
 Connection conn = ods.getConnection();

 // Create Oracle DatabaseMetaData object
 DatabaseMetaData meta = conn.getMetaData();

 // gets driver info:
 System.out.println("JDBC driver version is " + meta.getDriverVersion());
 }
}

You can also determine the version of the JDBC driver by executing the following
commands:

• java -jar ojdbc8.jar

2.2.5 Testing the JDBC and Database Connection
The samples directory contains sample programs for a particular Oracle JDBC driver.
One of the programs, JdbcCheckup.java, is designed to test JDBC and the database
connection. The program queries for the user name, password, and the name of the
database to which you want to connect. The program connects to the database,
queries for the string "Hello World", and prints it to the screen.

Go to the samples directory, and compile and run the JdbcCheckup.java program. If
the results of the query print without error, then your Java and JDBC installations are
correct.

Chapter 2
Verifying a JDBC Client Installation

2-5

Although JdbcCheckup.java is a simple program, it demonstrates several important
functions by performing the following:

• Imports the necessary Java classes, including JDBC classes

• Creates a DataSource instance

• Connects to the database

• Runs a simple query

• Prints the query results to your screen

The JdbcCheckup.java program, which uses the JDBC OCI driver, is as follows:

/*
 * This sample can be used to check the JDBC installation.
 * Just run it and provide the connect information. It will select
 * "Hello World" from the database.
 */

// You need to import the java.sql and JDBC packages to use JDBC
import java.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.OracleDataSource;

// We import java.io to be able to read from the command line
import java.io.*;

class JdbcCheckup
{
 public static void main(String args[]) throws SQLException, IOException
 {

 // Prompt the user for connect information
 System.out.println("Please enter information to test connection to
 the database");
 String user;
 String password;
 String database;

 user = readEntry("user: ");
 int slash_index = user.indexOf('/');
 if (slash_index != -1)
 {
 password = user.substring(slash_index + 1);
 user = user.substring(0, slash_index);
 }
 else
 password = readEntry("password: ");
 database = readEntry("database(a TNSNAME entry): ");

 System.out.print("Connecting to the database...");
 System.out.flush();
 System.out.println("Connecting...");
 // Open an OracleDataSource and get a connection
 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:oci:@" + database);
 ods.setUser(user);
 ods.setPassword(password);
 Connection conn = ods.getConnection();
 System.out.println("connected.");

Chapter 2
Verifying a JDBC Client Installation

2-6

 // Create a statement
 Statement stmt = conn.createStatement();

 // Do the SQL "Hello World" thing
 ResultSet rset = stmt.executeQuery("select 'Hello World' from dual");

 while (rset.next())
 System.out.println(rset.getString(1));
 // close the result set, the statement and the connection
 rset.close();
 stmt.close();
 conn.close();
 System.out.println("Your JDBC installation is correct.");
 }

 // Utility function to read a line from standard input
 static String readEntry(String prompt)
 {
 try
 {
 StringBuffer buffer = new StringBuffer();
 System.out.print(prompt);
 System.out.flush();
 int c = System.in.read();
 while (c != '\n' && c != -1)
 {
 buffer.append((char)c);
 c = System.in.read();
 }
 return buffer.toString().trim();
 }
 catch(IOException e)
 {
 return "";
 }
 }
}

2.3 Basic Steps in JDBC
After verifying the JDBC client installation, you can start creating your JDBC
applications. When using Oracle JDBC drivers, you must include certain driver-specific
information in your programs. This section describes, in the form of a tutorial, where
and how to add the information. The tutorial guides you through the steps to create
code that connects to and queries a database from the client.

You must write code to perform the following tasks:

1. Importing Packages

2. Opening a Connection to a Database

3. Creating a Statement Object

4. Running a Query and Retrieving a Result Set Object

5. Processing the Result Set Object

6. Closing the Result Set and Statement Objects

7. Making Changes to the Database

Chapter 2
Basic Steps in JDBC

2-7

8. About Committing Changes

9. Closing the Connection

Note:

You must supply Oracle driver-specific information for the first three tasks
that enable your program to use the JDBC application programming interface
(API) to access a database. For the other tasks, you can use standard JDBC
Java code, as you would for any Java application.

2.3.1 Importing Packages
Regardless of which Oracle JDBC driver you use, include the import statements
shown in Table 2-1 at the beginning of your program using the following syntax:

import <package_name>;

Table 2-1 Import Statements for JDBC Driver

Import statement Provides

import java.sql.*; Standard JDBC packages.

import java.math.*; The BigDecimal and BigInteger classes. You can
omit this package if you are not going to use these
classes in your application.

import oracle.jdbc.*;

import oracle.jdbc.pool.*;

import oracle.sql.*;

Oracle extensions to JDBC. This is optional.

OracleDataSource.

Oracle type extensions. This is optional.

The Oracle packages listed as optional provide access to the extended functionality
provided by Oracle JDBC drivers, but are not required for the example presented in
this section.

Note:

It is better to import only the classes your application needs, rather than
using the wildcard asterisk (*). This guide uses the asterisk (*) for simplicity,
but this is not the recommended way of importing classes and interfaces.

2.3.2 Opening a Connection to a Database
First, you must create an OracleDataSource instance. Then, open a connection to the
database using the OracleDataSource.getConnection method. The properties of the
retrieved connection are derived from the OracleDataSource instance. If you set the
URL connection property, then all other properties, including TNSEntryName,
DatabaseName, ServiceName, ServerName, PortNumber, Network Protocol, and driver
type are ignored.

Chapter 2
Basic Steps in JDBC

2-8

Specifying a Database URL, User Name, and Password

The following code sets the URL, user name, and password for a data source:

OracleDataSource ods = new OracleDataSource();
ods.setURL(url);
ods.setUser(user);
ods.setPassword(password);

The following example connects user HR with password hr to a database with service
orcl through port 5221 of the host myhost, using the JDBC Thin driver:

OracleDataSource ods = new OracleDataSource();
String url = "jdbc:oracle:thin:@//myhost:5221/orcl";
ods.setURL(url);
ods.setUser("HR");
ods.setPassword("hr");
Connection conn = ods.getConnection();

Note:

The user name and password specified in the arguments override any user
name and password specified in the URL.

Specifying a Database URL that Includes User Name and Password

The following example connects user HR with password hr to a database host whose
Transparent Network Substrate (TNS) entry is myTNSEntry, using the JDBC Oracle
Call Interface (OCI) driver. In this case, the URL includes the user name and password
and is the only input parameter.

String url = "jdbc:oracle:oci:HR/hr@myTNSEntry");
ods.setURL(url);
Connection conn = ods.getConnection();

If you want to connect using the Thin driver, then you must specify the port number.
For example, if you want to connect to the database on the host myhost that has a
TCP/IP listener on port 5221 and the service identifier is orcl, then provide the
following code:

String URL = "jdbc:oracle:thin:HR/hr@//myhost:5221/orcl");
ods.setURL(URL);
Connection conn = ods.getConnection();

Related Topics

• Data Sources and URLs

• Data Sources and URLs

2.3.3 Creating a Statement Object
Once you connect to the database and, in the process, create a Connection object,
the next step is to create a Statement object. The createStatement method of the
JDBC Connection object returns an object of the JDBC Statement type. To continue

Chapter 2
Basic Steps in JDBC

2-9

the example from the previous section, where the Connection object conn was
created, here is an example of how to create the Statement object:

Statement stmt = conn.createStatement();

2.3.4 Running a Query and Retrieving a Result Set Object
To query the database, use the executeQuery method of the Statement object. This
method takes a SQL statement as input and returns a JDBC ResultSet object.

Note:

• The method used to execute a Statement object depends on the type of
SQL statement being executed. If the Statement object represents a
SQL query returning a ResultSet object, the executeQuery method
should be used. If the SQL is known to be a DDL statement or a DML
statement returning an update count, the executeUpdate method should
be used. If the type of the SQL statement is not known, the execute
method should be used.

• In case of a standard JDBC driver, if the SQL string being executed does
not return a ResultSet object, then the executeQuery method throws a
SQLException exception. In case of an Oracle JDBC driver, the
executeQuery method does not throw a SQLException exception even if
the SQL string being executed does not return a ResultSet object.

To continue the example, once you create the Statement object stmt, the next step is
to run a query that returns a ResultSet object with the contents of the first_name
column of a table of employees named EMPLOYEES:

ResultSet rset = stmt.executeQuery ("SELECT first_name FROM employees");

2.3.5 Processing the Result Set Object
Once you run your query, use the next() method of the ResultSet object to iterate
through the results. This method steps through the result set row by row, detecting the
end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the appropriate getXXX
methods of the ResultSet object, where XXX corresponds to a Java data type.

For example, the following code will iterate through the ResultSet object, rset, from
the previous section and will retrieve and print each employee name:

while (rset.next())
 System.out.println (rset.getString(1));

The next() method returns false when it reaches the end of the result set. The
employee names are materialized as Java String values.

Chapter 2
Basic Steps in JDBC

2-10

2.3.6 Closing the Result Set and Statement Objects
You must explicitly close the ResultSet and Statement objects after you finish using
them. This applies to all ResultSet and Statement objects you create when using
Oracle JDBC drivers. The drivers do not have finalizer methods. The cleanup routines
are performed by the close method of the ResultSet and Statement classes. If you do
not explicitly close the ResultSet and Statement objects, serious memory leaks could
occur. You could also run out of cursors in the database. Closing both the result set
and the statement releases the corresponding cursor in the database. If you close only
the result set, then the cursor is not released.

For example, if your ResultSet object is rset and your Statement object is stmt, then
close the result set and statement with the following lines of code:

rset.close();
stmt.close();

When you close a Statement object that a given Connection object creates, the
connection itself remains open.

Note:

Typically, you should put close statements in a finally clause.

2.3.7 Making Changes to the Database
DML Operations

To perform DML (Data Manipulation Language) operations, such as INSERT or
UPDATE operations, you can create either a Statement object or a
PreparedStatement object. PreparedStatement objects enable you to run a statement
with varying sets of input parameters. The prepareStatement method of the JDBC
Connection object lets you define a statement that takes variable bind parameters and
returns a JDBC PreparedStatement object with your statement definition.

Use the setXXX methods on the PreparedStatement object to bind data to the
prepared statement to be sent to the database.

The following example shows how to use a prepared statement to run INSERT
operations that add two rows to the EMPLOYEES table.

 // Prepare to insert new names in the EMPLOYEES table
PreparedStatement pstmt = null;
try{
 pstmt = conn.prepareStatement ("insert into EMPLOYEES (EMPLOYEE_ID, FIRST_NAME)
values (?, ?)");

 // Add LESLIE as employee number 1500
 pstmt.setInt (1, 1500); // The first ? is for EMPLOYEE_ID
 pstmt.setString (2, "LESLIE"); // The second ? is for FIRST_NAME
 // Do the insertion
 pstmt.execute();

Chapter 2
Basic Steps in JDBC

2-11

 // Add MARSHA as employee number 507
 pstmt.setInt (1, 507); // The first ? is for EMPLOYEE_ID
 pstmt.setString (2, "MARSHA"); // The second ? is for FIRST_NAME
 // Do the insertion
 pstmt.execute();
}

finally{
 if(pstmt!=null)

 // Close the statement
 pstmt.close();
}

DDL Operations

To perform data definition language (DDL) operations, you must create a Statement
object. The following example shows how to create a table in the database:

//create table EMPLOYEES with columns EMPLOYEE_ID and FIRST_NAME
String query;
Statement stmt=null;

try{
 query="create table EMPLOYEES " +
 "(EMPLOYEE_ID int, " +
 "FIRST_NAME varchar(50))";
 stmt = conn.createStatement();
 stmt.executeUpdate(query);
 }
finally{
 //close the Statement object
 stmt.close();
 }

Note:

You can also use a PreparedStatement object to perform DDL operations.
However, you should not use a PreparedStatement object because the
useful part of such an object is that it can have parameters and a DDL
operation does not have any parameters.

Also, due to a Database limitation, if you use a PreparedStatement object for
a DDL operation, then it only works for the first time it is executed. So, you
should use only Statement objects for DDL operations.

The following example shows how to prepare your DDL statements before any
reexecution:

//
Statement stmt = null;
PreparedStatement pstmt = null;
try{
 pstmt = conn.prepareStatement ("insert into EMPLOYEES (EMPLOYEE_ID, FIRST_NAME)
values (?, ?)");
 stmt = conn.createStatement("truncate table EMPLOYEES");

Chapter 2
Basic Steps in JDBC

2-12

 // Add LESLIE as employee number 1500
 pstmt.setInt (1, 1500); // The first ? is for EMPLOYEE_ID
 pstmt.setString (2, "LESLIE"); // The second ? is for FIRST_NAME
 pstmt.execute();
 stmt.executeUpdate();

 // Add MARSHA as employee number 507
 pstmt.setInt (1, 507); // The first ? is for EMPLOYEE_ID
 pstmt.setString (2, "MARSHA"); // The second ? is for FIRST_NAME
 pstmt.execute();
 stmt.executeUpdate();
 }
finally{
if(pstmt!=null)

 // Close the statement
 pstmt.close();
}

Related Topics

• The setObject and setOracleObject Methods

• Other setXXX Methods

2.3.8 About Committing Changes
By default, data manipulation language (DML) operations are committed automatically
as soon as they are run. This is known as the auto-commit mode. If auto-commit mode
is on and you perform a COMMIT or ROLLBACK operation using the commit or rollback
method on a connection object, then you get the following error messages:

Table 2-2 Error Messages for Operations Performed When Auto-Commit Mode
is ON

Operation Error Messages

COMMIT Could not commit with auto-commit set on

ROLLBACK Could not rollback with auto-commit set on

If a SQLException is raised during a COMMIT or ROLLBACK operation with the error
messages as mentioned in the preceding table, then check the auto-commit status of
the connection because you get an exception when these operations are performed on
a connection that has auto-commit value set to true.

This exception is raised for any one of the following cases:

• When auto-commit status is set to true and commit or rollback method is called

• When the default status of auto-commit is not changed and commit or rollback
method is called

• When the value of the COMMIT_ON_ACCEPT_CHANGES property is true and commit or
rollback method is called after calling the acceptChanges method on a rowset

However, you can disable auto-commit mode with the following method call on the
Connection object:

conn.setAutoCommit(false);

Chapter 2
Basic Steps in JDBC

2-13

If you disable the auto-commit mode, then you must manually commit or roll back
changes with the appropriate method call on the Connection object:

conn.commit();

or:

conn.rollback();

A COMMIT or ROLLBACK operation affects all DML statements run since the last COMMIT
or ROLLBACK.

Note:

• If the auto-commit mode is disabled and you close the connection
without explicitly committing or rolling back your last changes, then an
implicit COMMIT operation is run.

• Any data definition language (DDL) operation always causes an implicit
COMMIT. If the auto-commit mode is disabled, then this implicit COMMIT will
commit any pending DML operations that had not yet been explicitly
committed or rolled back.

Related Topics

• Disabling Auto-Commit Mode

2.3.8.1 Changing Commit Behavior
When a transaction updates the database, it generates a redo entry corresponding to
this update. Oracle Database buffers this redo in memory until the completion of the
transaction. When you commit the transaction, the Log Writer (LGWR) process writes
the redo entry for the commit to disk, along with the accumulated redo entries of all
changes in the transaction. By default, Oracle Database writes the redo to disk before
the call returns to the client. This behavior introduces latency in the commit because
the application must wait for the redo entry to be persisted on disk.

If your application requires very high transaction throughput and you are willing to
trade commit durability for lower commit latency, then you can change the behavior of
the default COMMIT operation, depending on the needs of your application. You can
change the behavior of the COMMIT operation with the following options:

• WAIT

• NOWAIT

• WRITEBATCH

• WRITEIMMED

These options let you control two different aspects of the commit phase:

• Whether the COMMIT call should wait for the server to process it or not. This is
achieved by using the WAIT or NOWAIT option.

• Whether the Log Writer should batch the call or not. This is achieved by using the
WRITEIMMED or WRITEBATCH option.

Chapter 2
Basic Steps in JDBC

2-14

You can also combine different options together. For example, if you want the COMMIT
call to return without waiting for the server to process it and also the log writer to
process the commits in batch, then you can use the NOWAIT and WRITEBATCH options
together. For example:

((OracleConnection)conn).commit(
 EnumSet.of(
 OracleConnection.CommitOption.WRITEBATCH,
 OracleConnection.CommitOption.NOWAIT));

Note:

you cannot use the WAIT and NOWAIT options together because they have
opposite meanings. If you do so, then the JDBC driver will throw an
exception. The same applies to the WRITEIMMED and WRITEBATCH options.

2.3.9 Closing the Connection
You must close the connection to the database after you have performed all the
required operations and no longer require the connection. You can close the
connection by using the close method of the Connection object, as follows:

conn.close();

Note:

Typically, you should put close statements in a finally clause.

2.4 Sample: Connecting, Querying, and Processing the
Results

The steps in the preceding sections are illustrated in the following example, which
uses the Oracle JDBC Thin driver to create a data source, connects to the database,
creates a Statement object, runs a query, and processes the result set.

Note that the code for creating the Statement object, running the query, returning and
processing the ResultSet object, and closing the statement and connection uses the
standard JDBC API.

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.Statement;
import java.sql.SQLException;
import oracle.jdbc.pool.OracleDataSource;

class JdbcTest
{
 public static void main (String args []) throws SQLException
 {

Chapter 2
Sample: Connecting, Querying, and Processing the Results

2-15

OracleDataSource ods = null;
Connection conn = null;
Statement stmt = null;
ResultSet rset = null;

 // Create DataSource and connect to the local database
 ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:@//localhost:5221/orcl");
 ods.setUser("HR");
 ods.setPassword("hr");
 conn = ods.getConnection();

try
{
 // Query the employee names
 stmt = conn.createStatement ();
 rset = stmt.executeQuery ("SELECT first_name FROM employees");

 // Print the name out
 while (rset.next ())
 System.out.println (rset.getString (1));
 }

 //Close the result set, statement, and the connection

finally{
 if(rset!=null) rset.close();
 if(stmt!=null) stmt.close();
 if(conn!=null) conn.close();
}
 }
}

If you want to adapt the code for the OCI driver, then replace the call to the
OracleDataSource.setURL method with the following:

ods.setURL("jdbc:oracle:oci:@MyHostString");

where, MyHostString is an entry in the TNSNAMES.ORA file.

2.5 Support for Invisible Columns
Starting from this release, Oracle Database supports invisible columns. Using this
feature, you can add a column to the table in hidden mode and make it visible later.
JDBC provides APIs to retrieve information about invisible columns. To get information
about whether a column is invisible or not, you can use the isColumnInvisible
method available in the oracle.jdbc.OracleResultSetMetaData interface in the
following way:

Example

...
Connection conn = DriverManager.getConnection(jdbcURL, user, password);
Statement stmt = conn.createStatement ();
stmt.executeQuery ("create table hiddenColsTable (a varchar(20), b int invisible)");
stmt.executeUpdate("insert into hiddenColsTable (a,b) values('somedata',1)");
stmt.executeUpdate("insert into hiddenColsTable (a,b) values('newdata',2)");

System.out.println ("Invisible columns information");

Chapter 2
Support for Invisible Columns

2-16

try
{
 ResultSet rset = stmt.executeQuery("SELECT a, b FROM hiddenColsTable");
 OracleResultSetMetaData rsmd = (OracleResultSetMetaData)rset.getMetaData();
 while (rset.next())
 {
 System.out.println("column1 value:" + rset.getString(1));
 System.out.println("Visibility:" + rsmd.isColumnInvisible(1));
 System.out.println("column2 value:" + rset.getInt(2));
 System.out.println("Visibility:" + rsmd.isColumnInvisible(2));
 }
}
catch (Exception ex)
{
 System.out.println("Exception :" + ex);
 ex.printStackTrace();
}

Alternatively, you can also use the getColumns method available in the
oracle.jdbc.OracleDatabaseMetaData class to retrieve information about invisible
columns.

Example

...
Connection conn = DriverManager.getConnection(jdbcURL, user, password);
Statement stmt = conn.createStatement ();
stmt.executeQuery ("create table hiddenColsTable (a varchar(20), b int invisible)");
stmt.executeUpdate("insert into hiddenColsTable (a,b) values('somedata',1)");
stmt.executeUpdate("insert into hiddenColsTable (a,b) values('newdata',2)");

 System.out.println ("getColumns for table with invisible columns");
 try
 {
 DatabaseMetaData dbmd = conn.getMetaData();
 ResultSet rs = dbmd.getColumns(null, "HR", "hiddenColsTable", null);
 OracleResultSetMetaData rsmd = (OracleResultSetMetaData)rs.getMetaData();
 int colCount = rsmd.getColumnCount();
 System.out.println("colCount: " + colCount);
 String[] columnNames = new String [colCount];

 for (int i = 0; i < colCount; ++i)
 {
 columnNames[i] = rsmd.getColumnName (i + 1);
 }

 while (rs.next())
 {
 for (int i = 0; i < colCount; ++i)
 System.out.println(columnNames[i] +":" +rs.getString (columnNames[i]));
 }
 }
 catch (Exception ex)
 {
 System.out.println("Exception: " + ex);
 ex.printStackTrace();
 }

Chapter 2
Support for Invisible Columns

2-17

Note:

The server-side internal driver, kprb does not support fetching information
about invisible columns.

2.6 Support for Verifying JSON Data
Starting from Oracle Database Release 18c, JDBC drivers can verify whether a
column returned in the ResultSet is a JSON column or not. To get information about
whether a column is JSON or not, you can use the isColumnJSON method available in
the oracle.jdbc.OracleResultSetMetaData interface in the following way:

Example 2-1 Example

 ...
 public void test(Connection conn)
 throws Exception{

 try {
 show ("tkpjb26776242 - start");
 createTable(conn);

 String sql = "SELECT col1, col2, col3, col4, col5, col6, col7, col8
FROM tkpjb26776242_tab";
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(sql);
 ResultSetMetaData rsmd = rs.getMetaData();

 OracleResultSetMetaData orsmd = (OracleResultSetMetaData)rsmd;

 int colCnt = orsmd.getColumnCount();
 show("Table has " + colCnt + " columns.");
 for (int i = 1; i <= colCnt; i++) {
 String columnName = orsmd.getColumnName(i);
 String typeName = orsmd.getColumnTypeName(i);
 boolean invisible = orsmd.isColumnInvisible(i);
 boolean json = orsmd.isColumnJSON(i);
 show(columnName + " " + typeName + (invisible?" INVISIBLE":"")
+ (json?" JSON":""));
 }

 rs.close();
 stmt.close();

 show ("tkpjb26776242 - end");
 }
 finally {
 dropTable(conn);
 }
 }

Chapter 2
Support for Verifying JSON Data

2-18

 private void createTable(Connection conn) throws Exception{
 String sql = " create table tkpjb26776242_tab ("
 + " col1 clob, "
 + " col2 clob , "
 + " col3 clob INVISIBLE, "
 + " col4 clob INVISIBLE, "
 + " col5 varchar2(200), "
 + " col6 varchar2(200), "
 + " col7 varchar2(200) INVISIBLE, "
 + " col8 varchar2(200) INVISIBLE, "
 + " check (col2 IS JSON), "
 + " check (col4 IS JSON), "
 + " check (col6 IS JSON), "
 + " check (col8 IS JSON))";

 Util.doSQL(conn, sql);
 }

 private void dropTable(Connection conn) throws Exception{
 String sql = " drop table tkpjb26776242_tab";

 Util.trySQL(conn, sql);
 }
 ...

2.7 Support for Implicit Results
Starting from this release, Oracle Database supports results of SQL statements
executed in a stored procedure to be returned implicitly to the client applications
without the need to explicitly use a REF CURSOR. You can use the following methods to
retrieve and process the implicit results returned by PL/SQL procedures or blocks:

Method Description

getMoreResults Checks if there are more results available in the result set

getMoreResults(int) Checks if there are more results available in the result set,
like the overloaded method. This method accepts an int
parameter that can have one of the following values:

• KEEP_CURRENT_RESULT
• CLOSE_ALL_RESULTS
• CLOSE_CURRENT_RESULT

getResultSet Iteratively retrieves each implicit result from an executed
PL/SQL statement

Chapter 2
Support for Implicit Results

2-19

Note:

• The server-side internal driver, kprb does not support fetching
information about implicit results.

• Only SELECT queries can be returned implicitly.

• Applications retrieve each result set sequentially, but can fetch rows from
any result set independent of the sequence.

Suppose you have a procedure called foo as the following:

 create procedure foo as
 c1 sys_refcursor;
 c2 sys_refcursor;
begin
 open c1 for select * from hr.employees;
 dbms_sql.return_result(c1); --return to client
 -- open 1 more cursor
 open c2 for select * from hr.departments;
 dbms_sql.return_result (c2); --return to client
end;

The following code snippet demonstrates how to retrieve the implicit results returned
by PL/SQL procedures using the getMoreResults methods:

Example 1

String sql = "begin foo; end;";
...
Connection conn = DriverManager.getConnection(jdbcURL, user, password);
 try {
 Statement stmt = conn.createStatement ();
 stmt.executeQuery (sql);

 while (stmt.getMoreResults())
 {
 ResultSet rs = stmt.getResultSet();
 System.out.println("ResultSet");
 while (rs.next())
 {
 /* get results */
 }
 }
 }

Suppose you have another procedure called foo as the following:

create or replace procedure foo asc1 sys_refcursor; c2 sys_refcursor; c3
sys_refcursor; begin open c1 for 'select * from hr.employees';
dbms_sql.return_result (c1);-- cursor 2open c2 for 'select * from hr.departments';
dbms_sql.return_result (c2);-- cursor 3open c3 for 'select first_name from
hr.employees';
dbms_sql.return_result (c3); end;

The following code snippet demonstrates how to retrieve the implicit results returned
by PL/SQL procedures using the getMoreResults(int) methods:

Chapter 2
Support for Implicit Results

2-20

Example 2

String sql = "begin foo; end;";
...
Connection conn = DriverManager.getConnection(jdbcURL, user, password);

try {
 Statement stmt = conn.createStatement ();
 stmt.executeQuery (sql);
 ResultSet rs = null;

 boolean retval = stmt.getMoreResults(Statement.KEEP_CURRENT_RESULT))
 if (retval)
 {
 rs = stmt.getResultSet();
 System.out.println("ResultSet");
 while (rs.next())
 {
 /* get results */
 }
 }

 /* closes open results */
 retval = stmt.getMoreResults(Statement.CLOSE_ALL_RESULTS);

 if (retval)
 {
 System.out.println("More ResultSet available");
 rs = stmt.getResultSet();
 System.out.println("ResultSet");
 while (rs.next())
 {
 /* get results */
 }
 }

 /* close current result set */
 retval = stmt.getMoreResults(Statement.CLOSE_CURRENT_RESULT);

 if(retval)
 {
 System.out.println("More ResultSet available");
 rs = stmt.getResultSet();
 while (rs.next())
 {
 /* get Results */

 }
 }
 }

2.8 Support for Lightweight Connection Validation
Starting from Oracle Database Release 18c, JDBC Thin driver supports lightweight
connection validation. Lightweight connection validation enables JDBC applications to
verify connection validity by sending a zero length NS data packet that does not
require a round-trip to the database. For the earlier releases of Oracle Database, when
you call the isValid(timeout) method to test the validity of a connection, Oracle

Chapter 2
Support for Lightweight Connection Validation

2-21

JDBC driver uses a ping-pong protocol, which is an expensive operation as it makes a
full round-trip to the database. In Oracle Database Release 18c, the
isValid(timeout) method instead sends an empty packet to the database and does
not wait to receive it back. So, connection validation is faster, which results in better
application performance.

Lightweight connection validation is disabled by default. To enable this feature, you
must set the oracle.jdbc.defaultConnectionValidation connection property value
to SOCKET. If this property is set, then the JDBC driver performs lightweight connection
validation, when you call the isValid(timeout) method.

Note:

• Lightweight connection validation checks only the underlying socket
health. When the isValid(timeout) method returns true, that is, if a
connection is termed as valid, this validation only guarantees that the
server is not unreachable (dead socket). It does not provide any status
about the server processes, like whether they are running or not.
However, by default, that is, when lightweight connection validation is not
enabled, the isValid(timeout) method does check whether the network
between the client and the server is intact or not.

• Only the JDBC Thin driver supports this feature.

New APIs for Lightweight Connection Validation

• oracle.jdbc.defaultConnectionValidation

This connection property specifies the level of connection validation. The possible
values for this property are: NONE, LOCAL, SOCKET, NETWORK, SERVER, and COMPLETE.
These values are case-sensitive, and setting any value other than these values
throws an exception. The default value is NETWORK.

• public boolean isValid(ConnectionValidation validation_level, int
timeout) throws SQLException

The new variation of the existing isValid(timeout) method accepts two
parameters: level of validation (validation_level) and timeout. The first
parameter specifies the level of connection validation.

Example 2-2 Example of Lightweight Connection Validation

The following code snippet demonstrates how to implement lightweight connection
mechanism:

 ...
 OracleDataSource ods = new OracleDataSource();
 ods.setURL(url);
 ods.setUser(user);
 ods.setPassword(password);
 Connection conn = ods.getConnection();
 try{
 boolean isValid = ((OracleConnection)conn).

isValid(ConnectionValidation.SOCKET,timeout);

Chapter 2
Support for Lightweight Connection Validation

2-22

 System.out.println("Connection isValid = "+isValid);
 }
 catch (Exception ex)
 {
 System.out.println("Exception :" + ex);
 ex.printStackTrace();
 }

2.9 Support for Deprioritization of Database Nodes
Starting from Oracle Database 12c Release 2 (12.2.0.1), JDBC drivers support
deprioritization of database nodes. When a node fails, JDBC deprioritizes it for the
next 10 minutes, which is the default expiry time. For example, if there are three nodes
A, B, C, and node A is down, then connections are allocated first from nodes B and C,
and then from node A. After the default expiry time, node A is no longer deprioritized,
that is, connections are allocated from all the three nodes on availability basis. Also,
during the default expiry time, if a connection attempt to node A succeeds, then node
A is no longer considered to be a deprioritized node. You can specify the default expiry
time for deprioritization using the oracle.net.DOWN_HOSTS_TIMEOUT system property.

For example, in the following URL, scan_listener0 has ip1, ip2, and ip3 IP
addresses configured, after retrieving its IP addresses. Now, if ip1 is deprioritized,
then the order of trying IP addresses will be ip2, ip3, and then ip1. If all IP addresses
are unavailable, then the whole host is tried last, after trying node_1 and node_2.

(DESCRIPTION_LIST=
 (DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=scan_listener0)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=node_1)(PORT=1528))
 (ADDRESS=(PROTOCOL=sdp)(HOST=node_2)(PORT=1527))
)
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=node_3)(PORT=1528))
)
 (CONNECT_DATA=(SERVICE_NAME=cdb3))
)
 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=node_0)(PORT=1528))
 (CONNECT_DATA=(SERVICE_NAME=cdb3))
)
)

2.10 Support for Oracle Connection Manager in Traffic
Director Mode

Oracle Database Release 18c JDBC Drivers support Oracle Connection Manager in
Traffic Director Mode, which is a proxy placed between the database clients and the
database instances. A JDBC client can connect to the Oracle Connection Manager in

Chapter 2
Support for Deprioritization of Database Nodes

2-23

Traffic Director Mode, which in turn connects to the target Oracle Database. The Two-
Task Common (TTC) messages, which are sent from the clients, are intercepted by
Oracle Connection Manager in Traffic Director Mode. It parses the incoming TTC
messages and relays the request to the appropriate destination database. Once the
responses are received, Oracle Connection Manager in Traffic Director Mode transfers
the results back from the destination database to the clients through TTC responses.

The following image illustrates the architecture of Oracle Connection Manager in
Traffic Director Mode:

Figure 2-1 Architecture of Oracle Connection Manager in Traffic Director Mode

Applications and
Application Servers

Oracle Connection
Manager in Traffic

Director Mode

Oracle
Databases

See Also:

• Oracle Database Net Services Administrator's Guide for more
information about configuring the cman.ora file to set up Oracle
Connection Manager in Traffic Director Mode

• Oracle Database Net Services Reference for more information about
Oracle Connection Manager in Traffic Director Mode parameters

2.10.1 Modes of Running Oracle Connection Manager in Traffic
Director Mode

You can run Oracle Connection Manager in Traffic Director Mode in the following
modes:

• Pooled connection mode

The pooled connection mode uses a new feature called Proxy Resident
Connection Pooling, which is a proxy-enabled mode of Database Resident
Connection Pooling. The Proxy Resident Connection Pooling reduces the

Chapter 2
Support for Oracle Connection Manager in Traffic Director Mode

2-24

connection load on the database as it multiplexes a large number of client
connections over a fewer number of database connections. Any application using
Oracle Database 12c Release 1 (12.1) JDBC drivers and later can use this
connection mode.

Note:

This feature can best be used with clients using DRCP-aware connection
pools.

• Nonpooled or dedicated connection mode

You can use the Nonpooled or dedicated connection mode with applications using
Oracle Database 11g Release 2 (11.2.0.4) JDBC drivers and later. However,
some capabilities such as connection multiplexing are not available in this mode.

Related Topics

• Overview of Database Resident Connection Pooling

See Also:

• Database Admin Guide

• Universal Connection Pool Developer's Guide

2.10.2 Benefits of Oracle Connection Manager in Traffic Director Mode

Oracle Connection Manager in Traffic Director Mode provides the following benefits:

• Transparent performance enhancements and connection multiplexing, which
includes:

– Statement caching, rows prefetching, and result set caching are auto-enabled
for all modes of operation.

– Database session multiplexing (pooled mode only) using the proxy resident
connection pool (PRCP), where PRCP is a proxy mode of Database Resident
Connection Pooling (DRCP). Applications get transparent connection-time
load balancing and run-time load balancing between Oracle Connection
Manager in Traffic Director Mode and the database.

– For multiple Oracle Connection Manager in Traffic Director Mode instances,
applications get increased scalability through client-side connection-time load
balancing or with a load balancer (BIG-IP, NGINX, and others)

• Zero application downtime

– Planned database maintenance or pluggable database (PDB) relocation

* Pooled mode

Oracle Connection Manager in Traffic Director Mode responds to Oracle
Notification Service (ONS) events for planned outages and redirects work.

Chapter 2
Support for Oracle Connection Manager in Traffic Director Mode

2-25

Connections are drained from the pool on Oracle Connection Manager in
Traffic Director Mode when the request completes. Service relocation is
supported for Oracle Database 11g release 2 (11.2.0.4) and later.

For PDB relocation, Oracle Connection Manager in Traffic Director Mode
responds to in-band notifications when a PDB is relocated, that is even
when ONS is not configured (for Oracle Database release 18c and later
server only)

* Non-pooled or dedicated mode

When there is no request boundary information from the client, Oracle
Connection Manager in Traffic Director Mode supports planned outage for
many applications (as long as only simple session state and cursor state
need to be preserved across the request or transaction boundaries). This
support includes:

* Stop service or PDB at the transaction boundary, or it leverages
Oracle Database release 18c continuous application availability to
stop the service at the request boundary

* Oracle Connection Manager in Traffic Director Mode leverages
Transparent Application Failover (TAF) failover restore to reconnect
and restore simple states.

– Unplanned database outages for read-mostly workloads

• High Availability of Oracle Connection Manager in Traffic Director Mode to avoid a
single point of failure. This is supported by:

– Multiple instances of Oracle Connection Manager in Traffic Director Mode
using a load balancer or client side load balancing/failover in the connection
string

– Rolling upgrade of Oracle Connection Manager in Traffic Director Mode
instances

– Graceful close of existing connections from client to Oracle Connection
Manager in Traffic Director Mode for planned outages

– In-band notifications to Oracle Database release 18c and later clients

– For older clients, notifications are sent with the response of the current request

• For security and isolation, Oracle Connection Manager in Traffic Director Mode
furnishes:

– Database Proxy supporting transmission control protocol/transmission control
protocol secure (TCP/TCPS) and protocol conversion

– Firewall based on the IP address, service name, and secure socket layer/
transport layer security (SSL/TLS) wallets

– Tenant isolation in a multi-tenant environment

– Protection against denial-of-service and fuzzing attacks

– Secure tunneling of database traffic across Oracle Database on-premises and
Oracle Cloud

Chapter 2
Support for Oracle Connection Manager in Traffic Director Mode

2-26

2.10.3 Restrictions for Oracle Connection Manager in Traffic Director
Mode

The following functionalities are not supported with Oracle Connection Manager in
Traffic Director Mode:

• Distributed Transactions

• Advanced Queuing (AQ)

• Database Startup or Database Shutdown calls

• Sharding

• XML

• SQL Translation

• Proxy Authentication and SSL External Authentication, such as Distinguished
Names (DNs) used in LDAP

• Object REF

• Session switching

• Scrollable Cursor

• Per Iteration DML Row Counts

• Implicit Results

• Continuous Query Notification (CQN)

• Client Result Cache

• PL/SQL Callback for Session State Fix Up in Database Resident Connection
Pooling (DRCP)

• Multiple tagging in Database Resident Connection Pooling (DRCP)

• Application Continuity

• Authentication such as SYSDBA, SYSOPER and so on

• Real Application Security

• Data types such as PL/SQL Indexed Table Binds

• Bulk Copy (ODP.Net only)

• Self-Tuning (ODP.Net only)

• ASO encryption and supported algorithms (ASO only)

2.11 Stored Procedure Calls in JDBC Programs
This section describes how Oracle JDBC drivers support the following kinds of stored
procedures:

• PL/SQL Stored Procedures

• Java Stored Procedures

Chapter 2
Stored Procedure Calls in JDBC Programs

2-27

2.11.1 PL/SQL Stored Procedures
JDBC supports the invocation of PL/SQL procedures/functions and anonymous
blocks, using either JDBC escape syntax or PL/SQL block syntax. The following
PL/SQL calls would work with any Oracle JDBC driver:

// JDBC escape syntax
CallableStatement cs1 = conn.prepareCall
 ("{call proc (?,?)}") ; // stored proc
CallableStatement cs2 = conn.prepareCall
 ("{? = call func (?,?)}") ; // stored func
// PL/SQL block syntax
CallableStatement cs3 = conn.prepareCall
 ("begin proc (?,?); end;") ; // stored proc
CallableStatement cs4 = conn.prepareCall
 ("begin ? := func(?,?); end;") ; // stored func

As an example of using the Oracle syntax, here is a PL/SQL code snippet that creates
a stored function. The PL/SQL function gets a character sequence and concatenates a
suffix to it:

create or replace function foo (val1 char)
return char as
begin
 return val1 || 'suffix';
end;

The function invocation in your JDBC program should look like the following:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:oci:@<hoststring>");
ods.setUser("HR");
ods.setPassword("hr");
Connection conn = ods.getConnection();

CallableStatement cs = conn.prepareCall ("begin ? := foo(?); end;");
cs.registerOutParameter(1,Types.CHAR);
cs.setString(2, "aa");
cs.execute();
String result = cs.getString(1);

2.11.2 Java Stored Procedures
You can use JDBC to call Java stored procedures through the SQL interface. The
syntax for calling Java stored procedures is the same as the syntax for calling PL/SQL
stored procedures, presuming they have been properly published. That is, you have
written call specifications to publish them to the Oracle data dictionary. Applications
can call Java stored procedures using the Native Java Interface for direct invocation of
static Java methods.

2.12 About Processing SQL Exceptions
To handle error conditions, Oracle JDBC drivers throw SQL exceptions, producing
instances of the java.sql.SQLException class or its subclass. Errors can originate
either in the JDBC driver or in the database itself. Resulting messages describe the

Chapter 2
About Processing SQL Exceptions

2-28

error and identify the method that threw the error. Additional run-time information can
also be appended.

JDBC 3.0 defines only a single exception, SQLException. However, there are large
categories of errors and it is useful to distinguish them. Therefore, in JDBC 4.0, a set
of subclasses of the SQLException exception is introduced to identify the different
categories of errors.

Basic exception handling can include retrieving the error message, retrieving the error
code, retrieving the SQL state, and printing the stack trace. The SQLException class
includes functionality to retrieve all of this information, when available.

Retrieving Error Information

You can retrieve basic error information with the following methods of the
SQLException class:

• getMessage class includes functionality to retrieve all of this information, when
available.

• getErrorCode class includes functionality to retrieve all of this information, when
available.

• getSQLState class includes functionality to retrieve all of this information, when
available.

The following example prints output from a getMessage method call:

catch(SQLException e)
{
 System.out.println("exception: " + e.getMessage());
}

This would print the output, such as the following, for an error originating in the JDBC
driver:

exception: Invalid column type

Note:

Error message text is available in alternative languages and character sets
supported by Oracle.

Printing the Stack Trace

The SQLException class provides the printStackTrace() method for printing a stack
trace. This method prints the stack trace of the Throwable object to the standard error
stream. You can also specify a java.io.PrintStream object or java.io.PrintWriter
object for output.

The following code fragment illustrates how you can catch SQL exceptions and print
the stack trace.

try { <some code> }
catch(SQLException e) { e.printStackTrace (); }

Chapter 2
About Processing SQL Exceptions

2-29

To illustrate how the JDBC drivers handle errors, assume the following code uses an
incorrect column index:

// Iterate through the result and print the employee names
// of the code

try {
 while (rset.next ())
 System.out.println (rset.getString (5)); // incorrect column index
}
catch(SQLException e) { e.printStackTrace (); }

Assuming the column index is incorrect, running the program would produce the
following error text:

java.sql.SQLException: Invalid column index
at oracle.jdbc.OracleDriver.OracleResultSetImpl.getDate(OracleResultSetImpl.java:
1556)
at Employee.main(Employee.java:41)

Related Topics

• JDBC Error Messages

• Oracle Database Error Messages Reference

Chapter 2
About Processing SQL Exceptions

2-30

Part II
Oracle JDBC

This part includes chapters that discuss the different Java Database Connectivity
(JDBC) versions that Oracle Database 12c supports. It also includes chapters that
cover features specific to JDBC Thin driver, JDBC Oracle Call Interface (OCI) driver,
and the server-side internal driver.

Part II contains the following chapters:

• JDBC Standards Support

• Oracle Extensions

• Features Specific to JDBC Thin

• Features Specific to JDBC OCI Driver

• Server-Side Internal Driver

3
JDBC Standards Support

Oracle Java Database Connectivity (JDBC) drivers support different versions of the
JDBC standard features. In Oracle Database 12c Release 2 (12.2.0.1), Oracle JDBC
drivers have been enhanced to provide support for the JDBC 4.1 standards. These
features are provided through the oracle.jdbc and oracle.sql packages. These
packages support Java Development Kit (JDK) release 8. This chapter discusses the
JDBC standards support in Oracle JDBC drivers. It contains the following sections:

• Support for JDBC 2.0 Standard

• Support for JDBC 3.0 Standard

• Support for JDBC 4.0 Standard

• Support for JDBC 4.1 Standard

• Support for JDBC 4.2 Standard

3.1 Support for JDBC 2.0 Standard
This release of Oracle JDBC drivers provide support for JDBC 2.0 features through
JDK 1.2 and later versions. There are three areas to consider:

• Support for data types, such as objects, arrays, and large objects (LOBs), which is
handled through the java.sql package.

• Support for standard features, such as result set enhancements and update
batching, which is handled through standard objects, such as Connection,
ResultSet, and PreparedStatement, under JDK 1.2.x and later.

• Support for extended features, such as features of the JDBC 2.0 optional package,
also known as the standard extension application programming interface (API),
including data sources, connection pooling, and distributed transactions.

This section covers the following topics:

• Data Type Support

• Standard Feature Support

• Extended Feature Support

• Standard versus Oracle Performance Enhancement APIs

Note:

Versions of JDK earlier than 5.0 are no longer supported. The package
oracle.jdbc2 has been removed.

3-1

3.1.1 Data Type Support
Oracle JDBC fully supports JDK 6 and JDK 7, which includes standard JDBC 2.0
functionality through implementation of interfaces in the standard java.sql package.
These interfaces are implemented as appropriate by classes in the oracle.sql and
oracle.jdbc packages.

3.1.2 Standard Feature Support
In a JDK 6.0 environment, using the JDBC classes in ojdbc6.jar, JDBC 2.0 features,
such as scrollable result sets, updatable result sets, and update batching, are
supported through methods specified by standard JDBC 2.0 interfaces.

3.1.3 Extended Feature Support
Features of the JDBC 2.0 optional package, including data sources, connection
pooling, and distributed transactions, are supported in a JDK 1.2.x or later
environment.

The standard javax.sql package and classes that implement its interfaces are
included in the Java Archive (JAR) files packaged with Oracle Database.

3.1.4 Standard versus Oracle Performance Enhancement APIs
Fetch size or row prefetching is available under JDBC 2.0, which had previously been
available only as an Oracle extension. You have the option of using the standard
model or the Oracle model. Oracle recommends that you use the JDBC standard
model whenever possible. Do not, however, try to mix usage of the standard model
and Oracle model within a single application for this feature.

Related Topics

• Row Fetch Size

3.2 Support for JDBC 3.0 Standard
Oracle Database 12c Release 1 JDBC drivers provide support for Standard JDBC 3.0
features through JDK 1.4 and later versions. The following table lists the JDBC 3.0
features supported by this release of Oracle JDBC drivers and gives references to a
detailed discussion of each feature.

Table 3-1 Key Areas of JDBC 3.0 Functionality

Feature Comments and References

Transaction savepoints See "Overview of Transaction Savepoints" for information.

Statement caching Reuse of prepared statements by connection pools. See Statement and Result Set
Caching .

Switching between local and
global transactions

See "About Switching Between Global and Local Transactions".

LOB modification See "JDBC 3.0 LOB Interface Methods" JDBC 3.0 LOB Interface Methods.

Chapter 3
Support for JDBC 3.0 Standard

3-2

Table 3-1 (Cont.) Key Areas of JDBC 3.0 Functionality

Feature Comments and References

Named SQL parameters See "Interface oracle.jdbc.OracleCallableStatement" and "Interface
oracle.jdbc.OraclePreparedStatement" Interface
oracle.jdbc.OraclePreparedStatement.

RowSets See JDBC RowSets

Retrieving auto-generated
keys

See "Retrieval of Auto-Generated Keys" Retrieval of Auto-Generated Keys

Result set holdability See "Result Set Holdability" Result Set Holdability

The following JDBC 3.0 features supported by Oracle JDBC drivers are covered in this
section:

• Overview of Transaction Savepoints

• Retrieval of Auto-Generated Keys

• JDBC 3.0 LOB Interface Methods

• Result Set Holdability

3.2.1 Overview of Transaction Savepoints
The JDBC 3.0 specification supports savepoints, which offer finer demarcation within
transactions. Applications can set a savepoint within a transaction and then roll back
all work done after the savepoint. Savepoints relax the atomicity property of
transactions. A transaction with a savepoint is atomic in the sense that it appears to be
a single unit outside the context of the transaction, but code operating within the
transaction can preserve partial states.

Note:

Savepoints are supported for local transactions only. Specifying a savepoint
within a global transaction causes a SQLException exception to be thrown.

3.2.1.1 About Creating a Savepoint
You create a savepoint using the Connection.setSavepoint method, which returns a
java.sql.Savepoint instance.

A savepoint is either named or unnamed. You specify the name of a savepoint by
supplying a string to the setSavepoint method. If you do not specify a name, then the
savepoint is assigned an integer ID. You retrieve a name using the getSavepointName
method. You retrieve an ID using the getSavepointId method.

Chapter 3
Support for JDBC 3.0 Standard

3-3

Note:

Attempting to retrieve a name from an unnamed savepoint or attempting to
retrieve an ID from a named savepoint throws a SQLException exception.

3.2.1.2 About Rolling Back to a Savepoint
You roll back to a savepoint using the Connection.rollback(Savepoint svpt)
method. If you try to roll back to a savepoint that has been released, then a
SQLException exception is thrown.

3.2.1.3 About Releasing a Savepoint
You remove a savepoint using the Connection.releaseSavepoint(Savepoint svpt)
method.

3.2.1.4 About Checking Savepoint Support
You query if savepoints are supported by your database by calling the
oracle.jdbc.OracleDatabaseMetaData.supportsSavepoints method, which returns
true if savepoints are available, false otherwise.

3.2.1.5 Savepoint Notes
When using savepoints, you must consider the following:

• After a savepoint has been released, attempting to reference it in a rollback
operation will cause a SQLException exception to be thrown.

• When a transaction is committed or rolled back, all savepoints created in that
transaction are automatically released and become invalid.

• Rolling a transaction back to a savepoint automatically releases and makes invalid
any savepoints created after the savepoint in question.

3.2.2 Retrieval of Auto-Generated Keys
Many database systems automatically generate a unique key field when a row is
inserted. Oracle Database provides the same functionality with the help of sequences
and triggers. JDBC 3.0 introduces the retrieval of auto-generated keys feature that
enables you to retrieve such generated values. In JDBC 3.0, the following interfaces
are enhanced to support the retrieval of auto-generated keys feature:

• java.sql.DatabaseMetaData

• java.sql.Connection

• java.sql.Statement

These interfaces provide methods that support retrieval of auto-generated keys.
However, this feature is supported only when INSERT statements are processed. Other
data manipulation language (DML) statements are processed, but without retrieving
auto-generated keys.

Chapter 3
Support for JDBC 3.0 Standard

3-4

Note:

The Oracle server-side internal driver does not support the retrieval of auto-
generated keys feature.

3.2.2.1 java.sql.Statement
If key columns are not explicitly indicated, then Oracle JDBC drivers cannot identify
which columns need to be retrieved. When a column name or column index array is
used, Oracle JDBC drivers can identify which columns contain auto-generated keys
that you want to retrieve. However, when the Statement.RETURN_GENERATED_KEYS
integer flag is used, Oracle JDBC drivers cannot identify these columns. When the
integer flag is used to indicate that auto-generated keys are to be returned, the ROWID
pseudo column is returned as key. The ROWID can be then fetched from the ResultSet
object and can be used to retrieve other columns.

3.2.2.2 Sample Code
The following code illustrates retrieval of auto-generated keys:

/** SQL statements for creating an ORDERS table and a sequence for generating the
 * ORDER_ID.
 *
 * CREATE TABLE ORDERS (ORDER_ID NUMBER, CUSTOMER_ID NUMBER, ISBN NUMBER,
 * DESCRIPTION NCHAR(5))
 *
 * CREATE SEQUENCE SEQ01 INCREMENT BY 1 START WITH 1000
 */

...
String cols[] = {"ORDER_ID", "DESCRIPTION"};

// Create a PreparedStatement for inserting a row into the ORDERS table.
OraclePreparedStatement pstmt = (OraclePreparedStatement)
conn.prepareStatement("INSERT INTO ORDERS (ORDER_ID, CUSTOMER_ID, ISBN,
DESCRIPTION) VALUES (SEQ01.NEXTVAL, 101,
 966431502, ?)", cols);
char c[] = {'a', '\u5185', 'b'};
String s = new String(c);

pstmt.setNString(1, s);
pstmt.executeUpdate();
ResultSet rset = pstmt.getGeneratedKeys();
...

In the preceding example, a sequence, SEQ01, is created to generate values for the
ORDER_ID column starting from 1000 and incrementing by 1 each time the sequence is
processed to generate the next value. An OraclePreparedStatement object is created
to insert a row in to the ORDERS table.

Chapter 3
Support for JDBC 3.0 Standard

3-5

3.2.2.3 Limitations of Auto-Generated Keys
Auto-generated keys are implemented using the DML returning clause. So, you need
to access the ResultSet object returned from getGeneratedKeys method by position
only and no bind variable names should be used as columns in the ResultSet object.

3.2.3 JDBC 3.0 LOB Interface Methods
The following tables show the conversions between Oracle proprietary methods and
JDBC 3.0 standard methods.

Table 3-2 BLOB Method Equivalents

Oracle Proprietary Method JDBC 3.0 Standard Method

putBytes(long pos, byte []
bytes)

setBytes(long pos, byte[] bytes)

putBytes(long pos, byte []
bytes, int length)

setBytes(long pos, byte[] bytes, int
offset, int len)

getBinaryOutputStream(long pos) setBinaryStream(long pos)

trim (long len) truncate(long len)

Table 3-3 CLOB Method Equivalents

Oracle Proprietary Method JDBC 3.0 Standard Method

putString(long pos, String str) setString(long pos, String str)

not applicable setString(long pos, String str, int
offset, int len)

getAsciiOutputStream(long pos) setAsciiStream(long pos)

getCharacterOutputStream(long pos) setCharacterStream(long pos)

trim (long len) truncate(long len)

3.2.4 Result Set Holdability
Result set holdability was introduced since JDBC 3.0. This feature enables
applications to decide whether the ResultSet objects should be open or closed, when
a commit operation is performed. The commit operation could be either implicit or
explicit.

Oracle Database supports only HOLD_CURSORS_OVER_COMMIT. Therefore, it is the default
value for Oracle JDBC drivers. Any attempt to change holdability will throw a
SQLFeatureNotSupportedException exception.

3.3 Support for JDBC 4.0 Standard
Oracle Database Release 18c JDBC drivers provide support for the JDBC 4.0
standard.

Chapter 3
Support for JDBC 4.0 Standard

3-6

Note:

The JDBC 4.0 specification defines the
java.sql.Connection.createArrayOf factory method to create
java.sql.Array objects. The createArrayOf method accepts the name of
the array element type as one of the arguments, where the array type is
anonymous. Oracle database supports only named array types, not
anonymous array types. So, the current release of Oracle JDBC drivers do
not and cannot support the createArrayOf method. You must use the Oracle
specific createARRAY method to create an array type.

See Also:

• "Creating ARRAY Objects" for more information about the
createArrayOf method.

• The following page for detailed information about these features as this
document provides only an overview of these new features

http://docs.oracle.com/javase/6/docs/

Some of the features available in Oracle Database Release 18c JDBC drivers are the
following:

• Wrapper Pattern Support

• SQLXML Type

• Enhanced Exception Hierarchy and SQLException

• The RowId Data Type

• LOB Creation

• National Language Character Set Support

3.3.1 Wrapper Pattern Support
Wrapper pattern is a common coding pattern used in Java applications to provide
extensions beyond the traditional JDBC API that are specific to a data source. You
may need to use these extensions to access the resources that are wrapped as proxy
class instances representing the actual resources. JDBC 4.0 introduces the Wrapper
interface that describes a standard mechanism to access these wrapped resources
represented by their proxy, to permit direct access to the resource delegates.

The Wrapper interface provides the following two methods:

• public boolean isWrapperFor(Class<?> iface) throws SQLException;

• public <T> T unwrap(Class<T> iface) throws SQLException;

The other JDBC 4.0 interfaces, except those that represent SQL data, all implement
this interface. These include Connection, Statement and its subtypes, ResultSet, and
the metadata interfaces.

Chapter 3
Support for JDBC 4.0 Standard

3-7

http://docs.oracle.com/javase/6/docs/

See Also:

http://docs.oracle.com/javase/7/docs/api/java/sql/Wrapper.html

3.3.2 SQLXML Type
One of the most important updates in JDBC 4.0 standard is the support for the XML
data type, defined by the SQL 2003 standard. Now JDBC offers a mapping interface to
support the SQL/XML database data type, that is, java.sql.SQLXML. This new JDBC
interface defines Java native bindings for XML, thus making handling of any database
XML data easier and more efficient.

Note:

• You also need to include the xdb6.jar and xmlparserv2.jar files in the
classpath environment variable to use SQLXML type data, if they are not
already present in the classpath.

• SQLXML is not supported in CachedRowset objects.

You can create an instance of XML by calling the createSQLXML method in
java.sql.Connection interface. This method returns an empty XML object.

The PreparedStatement, CallableStatement, and ResultSet interfaces have been
extended with the appropriate getter and setter methods in the following way:

• PreparedStatement: The method setSQLXML have been added

• CallableStatement: The methods getSQLXML and setSQLXML have been added

• ResultSet: The method getSQLXML have been added

Note:

In Oracle Database 10g and earlier versions of Oracle Database 11g, Oracle
JDBC drivers supported the Oracle SQL XML type (XMLType) through an
Oracle proprietary extension, which did not conform to the JDBC standard.

The 11.2.0.2 Oracle JDBC drivers conformed to the JDBC standard with the
introduction of a new connection property,
oracle.jdbc.getObjectReturnsXMLType. If you set this property to false,
then the getObject method returns an instance of java.sql.SQLXML type
and if you depend on the existing Oracle proprietary support for SQL
XMLType using oracle.xdb.XMLType, then you can change the value of this
property back to true.

However, setting of the getObjectReturnsXMLType property is not required
for the current version of Oracle JDBC drivers.

Chapter 3
Support for JDBC 4.0 Standard

3-8

http://docs.oracle.com/javase/7/docs/api/java/sql/Wrapper.html

Example

Example 3-1 Accessing SQLXML Data

The following example shows how to create an instance of XML from a String, write
the XML data into the Database, and then retrieve the XML data from the Database.

import java.sql.*;
import java.util.Properties;
import oracle.jdbc.pool.OracleDataSource;

public class SQLXMLTest
 {

 public static void main(String[] args)
 {

 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 PreparedStatement ps = null;

 String xml = "<?xml version=\"1.0\"?>\n" +
 "<oldjoke>\n" +
 "<burns>Say <quote>goodnight</quote>, Gracie.</burns>\n" +
 "<allen><quote>Goodnight, Gracie.</quote></allen>\n" +
 "<applause/>\n" +
 "</oldjoke>";

 try
 {

 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:@//localhost:5221/orcl");
 ods.setUser("HR");
 ods.setPassword("hr");
 conn = ods.getConnection();

 ps = conn.prepareStatement("insert into x values (?, ?)");
 ps.setString(1, "string to string");
 SQLXML x = conn.createSQLXML();
 x.setString(xml);
 ps.setSQLXML(2, x);
 ps.execute();
 stmt = conn.createStatement();
 rs = stmt.executeQuery("select * from x");
 while (rs.next())
 {
 x = rs.getSQLXML(2);
 System.out.println(rs.getString(1) + "\n" + rs.getSQLXML(2).getString());
 x.free();
 }

 rs.close();
 ps.close();
 }

 catch (SQLException e){e.printStackTrace ();}

Chapter 3
Support for JDBC 4.0 Standard

3-9

 }
}

Note:

Calling a setter method with an empty XML throws SQLException. The getter
methods never return an empty XML.

3.3.3 Enhanced Exception Hierarchy and SQLException
JDBC 3.0 defines only a single exception, SQLException. However, there are large
categories of errors and it is useful to distinguish them. This feature provides
subclasses of the SQLException class to identify the different categories of errors. The
primary distinction is between permanent errors and transient errors. Permanent errors
are a result of the correct operation of the system and will always occur. Transient
errors are the result of failures, including timeouts, of some part of the system and may
not reoccur.

JDBC 4.0 adds additional exceptions to represent transient and permanent errors and
the different categories of these errors.

Also, the SQLException class and its subclasses are enhanced to provide support for
the J2SE chained exception functionality.

3.3.4 The RowId Data Type
JDBC 4.0 provides the java.sql.RowId data type to represent SQL ROWID values. You
can retrieve a RowId value using the getter methods defined in the ResultSet and
CallableStatement interfaces. You can also use a RowId value in a parameterized
PreparedStatement to set a parameter with a RowId object or in an updatable result
set to update a column with a specific RowId value.

A RowId object is valid until the identified row is not deleted. A RowId object may also
be valid for the following:

• The duration of the transaction in which it is created

• The duration of the session in which it is created

• An undefined duration where by it is valid forever

The lifetime of the RowId object can be determined by calling the
DatabaseMetaData.getRowIdLifetime method.

3.3.5 LOB Creation
In JDBC 4.0, the Connection interface has been enhanced to provide support for the
creation of BLOB, CLOB, and NCLOB objects. The interface provides the createBlob,
createClob, and createNClob methods that enable you to create Blob, Clob, and
NClob objects.

The created large objects (LOBs) do not contain any data. You can add or retrieve
data to or from these objects by calling the APIs available in the java.sql.Blob,
java.sql.Clob, and java.sql.NClob interfaces. You can either retrieve the entire

Chapter 3
Support for JDBC 4.0 Standard

3-10

content or a part of the content from these objects. The following code snippet
illustrates how to retrieve 100 bytes of data from a BLOB object starting at offset 200:

...
Connection con = DriverManager.getConnection(url, props);
Blob aBlob = con.createBlob();
// Add data to the BLOB object.
aBlob.setBytes(...);
...
// Retrieve part of the data from the BLOB object.
InputStream is = aBlob.getBinaryStream(200, 100);
...

You can also pass LOBs as input parameters to a PreparedStatement object by using
the setBlob, setClob, and setNClob methods. You can use the updateBlob,
updateClob, and updateNClob methods to update a column value in an updatable
result set.

These LOBs are temporary LOBs and can be used for any purpose for which
temporary LOBs should be used. To make the storage permanent in the database,
these LOBs must be written to a table.

See Also:

"About Working With Temporary LOBs"

Temporary LOBs remain valid for at least the duration of the transaction in which they
are created. This may result in unwarranted use of memory during a long running
transaction. You can release LOBs by calling their free method, as follows:

...
Clob aClob = con.createClob();
int numWritten = aClob.setString(1, val);
aClob.free();
...

3.3.6 National Language Character Set Support
JDBC 4.0 introduces the NCHAR, NVARCHAR, LONGNVARCHAR, and NCLOB JDBC types to
access the national character set types. These types are similar to the CHAR, VARCHAR,
LONGVARCHAR, and CLOB types, except that the values are encoded using the national
character set.

3.4 Support for JDBC 4.1 Standard
Oracle Database 12c Release 1 JDBC drivers provide support for JDBC 4.1 standard
through JDK 7. This section describes the following important methods from JDBC 4.1
specification:

• setClientInfo Method

• getObject Method

Chapter 3
Support for JDBC 4.1 Standard

3-11

3.4.1 setClientInfo Method
For monitoring the consumption of the Database resources, you can use the
setClientInfo method to identify the various application tasks using the Database at
a given point of time. The setClientInfo method sets the value of the properties
providing various application information. This method accepts keys of the form
<namespace>.<keyname>. For example, you can use the ACTION, MODULE, and CLIENTID
keys (that are found in the V$SESSION view and in many performance views and can be
reported in trace files) with the setClientInfo method, as shown in the following code
snippet:

// "conn" is an instance of java.sql.Connection:
conn.setClientInfo("OCSID.CLIENTID", "Alice_HR_Payroll");
conn.setClientInfo("OCSID.MODULE", "APP_HR_PAYROLL");
conn.setClientInfo("OCSID.ACTION", "PAYROLL_REPORT");

The setClientInfo method checks the Java permission oracle.jdbc.clientInfo
and if the security check fails, then it throws a SecurityException. It supports
permission name patterns of the form <namespace>.*. The setClientInfo method
either sets or clears all pairs, so it requires that the permission name must be set to an
asterisk (*).

The JDBC driver supports any <namespace>.<keyname> combination. The
setClientInfo method supports the OCSID namespace among other namespaces.
But, there are differences between using the OCSID namespace and any other
namespace. With the OCSID namespace, the setClientInfo method supports only the
following keys:

• ACTION

• CLIENTID

• ECID

• MODULE

• SEQUENCE_NUMBER

• DBOP

Also, the information associated with any other namespace is communicated through
the network using a single protocol, while information associated with the OCSID
namespace is communicated using a different protocol. The protocol used for the
OCSID namespace is also used by the OCI C Library and the 10g JDBC thin driver
and the later thin drivers to send end-to-end metrics values.

Note:

• The setClientInfo method is backward compatible with the
setEndToEndMetrics and the setClientIdentifier methods, and can
use DMS to set client tags.

• The setEndToEndMetrics method was deprecated in Oracle Database
12c Release 1 (12.1).

Chapter 3
Support for JDBC 4.1 Standard

3-12

About Monitoring Database Operations

Many Java applications do not have a database connection, but they need to track
database activities on behalf of their functionalities. For such applications, Oracle
Database 12c Release 1 (12.1) introduced the DBOP tag that can be associated with a
thread in the application when the application does not have explicit access to a
database. The DBOP tag is associated with a thread through the invocation of DMS
APIs, without requiring an active connection to the database. When the thread sends
the next database call, then DMS propagates these tags through the connection along
with the database call, without requiring an extra round trip. In this way, applications
can associate their activity with database operations while factorizing the code in the
Application layer. The DBOP tag composes of the following:

• Database operation name

• The execution ID

• Operation attributes

The setClientInfo method supports the DBOP tag. The setClientInfo method sets
the value of the tag to monitor the database operations. When the JDBC application
connects to the database and a database round-trip is made, the database activities
can be tracked. For example, you can set the value of the DBOP tag to foo in the
following way:

...
Connection conn = DriverManager.getConnection(myUrl, myUsername, myPassword);
conn.setClientInfo("E2E_CONTEXT.DBOP", "foo");
Statement stmt = conn.createStatement();
stmt.execute("select 1 from dual"); // DBOP tag is set after this
...

3.4.2 getObject Method
The getObject method retrieves an object, based on the parameters passed. Oracle
Database 12c Release 2 (12.2.0.1) supports the following two getObject methods:

Method 1

<T> T getObject(int parameterIndex,
 java.lang.Class<T> type)
 throws SQLException

Method 2

<T> T getObject(java.lang.String parameterName,
 java.lang.Class<T> type)
 throws SQLException

These methods support the conversions listed in the JDBC specification and also the
additional conversions listed in Table A-1. The Oracle Database 12c Release 2
(12.2.0.1) drivers also support conversions to some additional classes, which
implement one or more static valueOf methods, if any of the following criteria is met:

• No other conversion is specified in JDBC specification or Table A-1

• The type argument defines one or more public static single argument methods
named valueOf

Chapter 3
Support for JDBC 4.1 Standard

3-13

• One or more of the valueOf methods take an argument that is a value of a type
supported because of JDBC specification or Table A-1

This release of JDBC drivers convert the value to a type specified in the JDBC
specification, or in Table A-1 and then call the corresponding valueOf method with the
converted value as the argument. If there is more than one appropriate valueOf
method, then the JDBC driver chooses one valueOf method in an unspecified way.

Example

ResultSet rs = . . . ;
Character c = rs.getObject(1, java.lang.Character.class);

The Character class defines the following valueOf method:

public static Character valueOf(char c);

Table A-1 specifies that NUMBER can be converted to char. So, if the first column of the
ResultSet is a NUMBER, then the getObject method converts that NUMBER value to a
char and passes the char value to the valueOf(char) method and returns the
resulting Character object.

3.5 Support for JDBC 4.2 Standard
Oracle Database 12c Release 2 (12.2.0.1) JDBC drivers provide support for JDBC 4.2
standard through JDK 8. This section describes some of the important methods added
in this release.

The %Large% Methods

This release of Oracle JDBC drivers support the following methods introduced in
JDBC 4.2 standard, which deal with long values:

• executeLargeBatch()

• executeLargeUpdate(String sql)

• executeLargeUpdate(String sql, int autoGeneratedKeys)

• executeLargeUpdate(String sql, int[] columnIndexes)

• executeLargeUpdate(String sql, String[] columnNames)

• getLargeMaxRows()

• getLargeUpdateCount()

• setLargeMaxRows(long max)

These new methods are available as part of the java.sql.Statement interface. The
%Large% methods are identical to the corresponding non-large methods, except that
they work with long values instead of int values. For example, the executeUpdate
method returns the number of rows updated as an int value, whereas, the
executeLargeUpdate method returns the number of rows updated as a long value. If
the number of rows is greater than the value of Integer.MAX_VALUE, then your
application must use the executeLargeUpdate method.

Chapter 3
Support for JDBC 4.2 Standard

3-14

The following code snippet shows how to use the executeLargeUpdate(String sql)
method:

...
Statement stmt = conn.createStatement();
stmt.executeQuery("create table BloggersData (FIRST_NAME varchar(100), ID
int)");
long updateCount = stmt.executeLargeUpdate("insert into BloggersData
(FIRST_NAME,ID) values('John',1)");
...

The SQLType Methods

This release of Oracle JDBC drivers support the following methods introduced in
JDBC 4.2 standard, which take SQLType parameters:

• setObject

The setObject method sets the value of the designated parameter for the
specified object. This method is similar to the setObject(int parameterIndex,
Object x, SQLType targetSqlType, int scaleOrLength) method, except that it
assumes a scale of zero. The default implementation of this method throws
SQLFeatureNotSupportedException.

void setObject(int parameterIndex, java.lang.Object x, SQLType
targetSqlType) throws SQLException

Where,

parameterIndex is the index of the designated parameter, where the first
parameter is 1, the second is 2, and so on

x is the object containing the input parameter value

targetSqlType is the SQL type to be sent to the database

• updateObject

The updateObject method takes the column index as a parameter and updates
the designated column with an Object value.

• registerOutParameter

The registerOutParameter method registers a specified parameter to be of JDBC
type SQLType.

The following code snippet shows how to use the setObject method:

...
int empId = 100;
connection.prepareStatement("SELECT FIRST_NAME, LAST_NAME FROM EMPLOYEES
WHERE EMPNO = ?");
preparedStatement.setObject(1, Integer.valueOf(empId), OracleType.NUMBER);
...

Chapter 3
Support for JDBC 4.2 Standard

3-15

Related Topics

• https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html

Chapter 3
Support for JDBC 4.2 Standard

3-16

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html

4
Oracle Extensions

Oracle provides Java classes and interfaces that extend the Java Database
Connectivity (JDBC) standard implementation, enabling you to access and manipulate
Oracle data types and use Oracle performance extensions. This chapter provides an
overview of the classes and interfaces provided by Oracle that extend the JDBC
standard implementation. It also describes some of the key support features of the
extensions.

This chapter contains the following sections:

• Overview of Oracle Extensions

• Features of the Oracle Extensions

• Oracle JDBC Packages

• Oracle Character Data Types Support

• Additional Oracle Type Extensions

• DML Returning

• Accessing PL/SQL Associative Arrays

Related Topics

• Performance Extensions

4.1 Overview of Oracle Extensions
Beyond standard features, Oracle JDBC drivers provide Oracle-specific type
extensions and performance extensions. These extensions are provided through the
following Java packages:

• oracle.sql

Provides classes that represent SQL data in Oracle format

• oracle.jdbc

Provides interfaces to support database access and updates in Oracle type
formats

Related Topics

• Oracle JDBC Packages

4.2 Features of the Oracle Extensions
The Oracle extensions to JDBC include a number of features that enhance your ability
to work with Oracle Databases. These include the following:

• Database Management Using JDBC

• Support for Oracle Data Types

4-1

• Support for Oracle Objects

• Support for Schema Naming

• DML Returning

• About Accessing PL/SQL Associative Arrays

4.2.1 Database Management Using JDBC
Starting from Oracle Database 11g Release 1, the oracle.jdbc.OracleConnection
interface has two JDBC methods, startup and shutdown, which enable you to start up
and shut down an Oracle Database instance.

Note:

My Oracle Support Note 335754.1 announces the desupport of the
oracle.jdbc.driver.* package in Oracle Database 11g JDBC drivers. In
other words, Oracle Database 10g Release 2 was the last database to
support this package and any API depending on the oracle.jdbc.driver.*
package will fail to compile in the current release of the Database. You must
remove such APIs and migrate to the standard APIs. For example, if your
code uses the oracle.jdbc.CustomDatum and
oracle.jdbc.CustomDatumFactory interfaces, then you must replace them
with the java.sql.Struct or java.sql.SQLData interfaces.

Related Topics

• Database Administration

4.2.2 Support for Oracle Data Types
One of the features of the Oracle JDBC extensions is the type support in the
oracle.sql package. This package includes classes that are an exact representation
of the data in Oracle format. Keep the following important points in mind, when you
use oracle.sql types in your program:

• For numeric type of data, the conversion to standard Java types does not
guarantee to retain full precision due to limitations of the data conversion process.
Use the BigDecimal type to minimize any data loss issues.

• For certain data types, the conversion to standard Java types can be dependent
on the system settings and your program may not run as expected. This is a
known limitation while converting data from oracle.sql types to standard Java
types.

• If the functionalities of your program is limited to reading data from one table and
writing the same to another table, then for numeric and date data, oracle.sql
types are slightly faster as compared to standard Java types. But, if your program
involves even a simple data manipulation operation like compare or print, then
standard Java types are faster.

• oracle.sql.CHAR is not an exact representation of the data in Oracle format.
oracle.sql.CHAR is constructed from java.lang.String. There is no advantage
of using oracle.sql.CHAR because java.lang.String is always faster and

Chapter 4
Features of the Oracle Extensions

4-2

represents the same character sets, excluding a couple of desupported character
sets.

Note:

Oracle strongly recommends you to use standard Java types and convert
any existing oracle.sql type of data to standard Java types. Internally, the
Oracle JDBC drivers strive to maximize the performance of Java standard
types. oracle.sql types are supported only for backward compatibility and
their use is discouraged.

Related Topics

• Package oracle.sql

• Oracle Character Data Types Support

• Additional Oracle Type Extensions

4.2.3 Support for Oracle Objects
Oracle JDBC supports the use of structured objects in the database, where an object
data type is a user-defined type with nested attributes. For example, a user application
could define an Employee object type, where each Employee object has a firstname
attribute (character string), a lastname attribute (character string), and an
employeenumber attribute (integer).

Oracle JDBC supports Oracle object data types. When you work with Oracle object
data types in a Java application, you must consider the following:

• How to map between Oracle object data types and Java classes

• How to store Oracle object attributes in corresponding Java objects

• How to convert attribute data between SQL and Java formats

• How to access data

Oracle objects can be mapped either to the weak java.sql.Struct type or to strongly
typed customized classes. These strong types are referred to as custom Java classes,
which must implement either the standard java.sql.SQLData interface or the Oracle
extension oracle.jdbc.OracleData interface. Each interface specifies methods to
convert data between SQL and Java.

Note:

Starting from Oracle Database 12c Release 1 (12.1), the OracleData
interface has replaced the ORAData interface.

Oracle recommends the use of the Oracle JVM Web Service Call-Out Utility to create
custom Java classes to correspond to your Oracle objects.

Chapter 4
Features of the Oracle Extensions

4-3

Related Topics

• Working with Oracle Object Types

• Oracle Database Java Developer’s Guide

4.2.4 Support for Schema Naming
Oracle object data type classes have the ability to accept and return fully qualified
schema names. A fully qualified schema name has this syntax:

{[schema_name].}[sql_type_name]

Where, schema_name is the name of the schema and sql_type_name is the SQL type
name of the object. schema_name and sql_type_name are separated by a period (.).

To specify an object type in JDBC, use its fully qualified name. It is not necessary to
enter a schema name if the type name is in the current naming space, that is, the
current schema. Schema naming follows these rules:

• Both the schema name and the type name may or may not be within quotation
marks. However, if the SQL type name has a period in it, such as
CORPORATE.EMPLOYEE, the type name must be quoted.

• The JDBC driver looks for the first period in the object name that is not within
quotation marks and uses the string before the period as the schema name and
the string following the period as the type name. If no period is found, then the
JDBC driver takes the current schema as default. That is, you can specify only the
type name, without indicating a schema, instead of specifying the fully qualified
name if the object type name belongs to the current schema. This also explains
why you must put the type name within quotation marks if the type name has a dot
in it.

For example, assume that user HR creates a type called person.address and then
wants to use it in his session. HR may want to skip the schema name and pass in
person.address to the JDBC driver. In this case, if person.address is not within
quotation marks, then the period is detected and the JDBC driver mistakenly
interprets person as the schema name and address as the type name.

• JDBC passes the object type name string to the database unchanged. That is, the
JDBC driver does not change the character case even if the object type name is
within quotation marks.

For example, if HR.PersonType is passed to the JDBC driver as an object type
name, then the JDBC driver passes the string to the database unchanged. As
another example, if there is white space between characters in the type name
string, then the JDBC driver will not remove the white space.

4.2.5 DML Returning
Oracle Database supports the use of the RETURNING clause with data manipulation
language (DML) statements. This enables you to combine two SQL statements into
one. Both the Oracle JDBC Oracle Call Interface (OCI) driver and the Oracle JDBC
Thin driver support DML returning.

Chapter 4
Features of the Oracle Extensions

4-4

See Also:

"DML Returning"

4.2.6 PL/SQL Associative Arrays
Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with Associative
Array parameters. Oracle JDBC drivers support PL/SQL Associative Arrays of scalar
data types

See Also:

"Accessing PL/SQL Associative Arrays"

4.3 Oracle JDBC Packages
This section describes the following Java packages, which support the Oracle JDBC
extensions:

• Package oracle.sql

• Package oracle.jdbc

4.3.1 Package oracle.sql
The oracle.sql package supports direct access to data in SQL format. This package
consists primarily of classes that provide Java mappings to SQL data types and their
support classes. Essentially, the classes act as Java containers for SQL data.

Each of the oracle.sql.* data type classes extends oracle.sql.Datum, a superclass
that encapsulates functionality common to all the data types. Some of the classes are
for JDBC 2.0-compliant data types. These classes, implement standard JDBC 2.0
interfaces in the java.sql package, as well as extending the oracle.sql.Datum class.

The LONG and LONG RAW SQL types and REF CURSOR type category have no
oracle.sql.* classes. Use standard JDBC functionality for these types. For example,
retrieve LONG or LONG RAW data as input streams using the standard JDBC result set
and callable statement methods getBinaryStream and getCharacterStream. Use the
getCursor method for REF CURSOR types.

Note:

Oracle recommends the use of standard JDBC types or Java types
whenever possible. The types in the package oracle.sql.* are provided
primarily for backward compatibility or for support of a few Oracle specific
features such as OPAQUE, OracleData, TIMESTAMPTZ, and so on.

Chapter 4
Oracle JDBC Packages

4-5

General oracle.sql.* Data Type Support

Each of the Oracle data type classes provides, among other things, the following:

• Data storage as Java byte arrays for SQL data

• A getBytes() method, which returns the SQL data as a byte array

• A toJdbc() method that converts the data into an object of a corresponding Java
class as defined in the JDBC specification

The JDBC driver does not convert Oracle-specific data types that are not part of
the JDBC specification, such as BFILE. The driver returns the object in the
corresponding oracle.sql.* format.

• Appropriate xxxValue methods to convert SQL data to Java type. For example,
stringValue, intValue, booleanValue, dateValue, and bigDecimalValue

• Additional conversion methods, getXXX and setXXX, as appropriate, for the
functionality of the data type, such as methods in the large object (LOB) classes
that get the data as a stream and methods in the REF class that get and set object
data through the object reference.

Overview of Class oracle.sql.STRUCT

oracle.sql.STRUCT class is the Oracle implementation of java.sql.Struct interface.
This class is a value class and you should not change the contents of the class after
construction. This class, as with all oracle.sql.* data type classes, is a subclass of
the oracle.sql.Datum class.

Note:

Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.STRUCT
class is deprecated and replaced with the oracle.jdbc.OracleStruct
interface, which is a part of the oracle.jdbc package. Oracle strongly
recommends you to use the methods available in the java.sql package,
where possible, for standard compatibility and methods available in the
oracle.jdbc package for Oracle specific extensions. Refer to MoS Note
1364193.1 for more information about the oracle.jdbc.OracleStruct
interface.

Overview of Class oracle.sql.REF

The oracle.sql.REF class is the generic class that supports Oracle object references.
This class, as with all oracle.sql.* data type classes, is a subclass of the
oracle.sql.Datum class.

Chapter 4
Oracle JDBC Packages

4-6

Note:

Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.REF
class is deprecated and replaced with the oracle.jdbc.OracleRef interface,
which is a part of the oracle.jdbc package. Oracle strongly recommends
you to use the methods available in the java.sql package, where possible,
for standard compatibility and methods available in the oracle.jdbc package
for Oracle specific extensions. Refer to MoS Note 1364193.1 for more
information about the oracle.jdbc.OracleRef interface.

The REF class has methods to retrieve and pass object references. However, selecting
an object reference retrieves only a pointer to an object. This does not materialize the
object itself. But the REF class also includes methods to retrieve and pass the object
data. You cannot create REF objects in your JDBC application. You can only retrieve
existing REF objects from the database.

You should use the JDBC standard type, java.sql.Ref, and the JDBC standard
methods in preference to using oracle.sql.REF. If you want your code to be more
portable, then you must use the standard type because only the Oracle JDBC drivers
will use instances of oracle.sql.REF type.

Overview of Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE

Binary large objects (BLOBs), character large objects (CLOBs), and binary files
(BFILEs) are for data items that are too large to store directly in a database table.
Instead, the database table stores a locator that points to the location of the actual
data.

Note:

• Starting from Oracle Database 12c Release 1 (12.1), the
oracle.sql.BLOB and Oracle.sql.CLOB classes are deprecated and
replaced with the oracle.jdbc.OracleBlob and
oracle.jdbc.OracleClob interfaces respectively, which are a part of the
oracle.jdbc package. Oracle strongly recommends you to use the
methods available in the java.sql package, where possible, for
standard compatibility and methods available in the oracle.jdbc
package for Oracle specific extensions. Refer to MoS Note 1364193.1
for more information about the oracle.jdbc.OracleBlob and
oracle.jdbc.OracleClob interfaces.

• oracle.sql.BFILE is an Oracle proprietary extension and there is no
JDBC standard equivalent.

The oracle.sql package supports these data types in several ways:

• BLOBs point to large unstructured binary data items and are supported by the
oracle.sql.BLOB class.

• CLOBs point to large character data items and are supported by the
oracle.sql.CLOB class.

Chapter 4
Oracle JDBC Packages

4-7

• BFILEs point to the content of external files (operating system files) and are
supported by the oracle.sql.BFILE class. BFiles are read-only.

You can select a BLOB, CLOB, or BFILE locator from the database using a standard
SELECT statement. However, you receive only the locator, and not the data. Additional
steps are necessary to retrieve the data.

Overview of Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW

These classes hold primitive SQL data types in Oracle native representation. In most
cases, these types are not used internally by the drivers and you should use the
standard JDBC types instead.

Java Double and Float NaN values do not have an equivalent Oracle NUMBER
representation. For example, for Oracle BINARY_FLOAT and BINARY_DOUBLE data types,
negative zero is coerced to positive zero and all NaNs are coerced to the canonical
one. So, a NullPointerException is thrown whenever a Double.NaN value or a
Float.NaN value is converted into an Oracle NUMBER using the oracle.sql.NUMBER
class. For instance, the following code throws a NullPointerException:

oracle.sql.NUMBER n = new oracle.sql.NUMBER(Double.NaN);
System.out.println(n.doubleValue()); // throws NullPointerException

Overview of Classes oracle.sql.TIMESTAMP, oracle.sql.TIMESTAMPTZ, and
oracle.sql.TIMESTAMPLTZ

The JDBC drivers support the following date/time data types:

• TIMESTAMP (TIMESTAMP)

• TIMESTAMP WITH TIME ZONE (TIMESTAMPTZ)

• TIMESTAMP WITH LOCAL TIME ZONE (TIMESTAMPLTZ)

The JDBC drivers allow conversions between DATE and date/time data types. For
example, you can access a TIMESTAMP WITH TIME ZONE column as a DATE value.

The JDBC drivers support the most popular time zone names used in the industry as
well as most of the time zone names defined in the JDK. Time zones are specified by
using the java.util.TimeZone class.

Note:

• Do not use TimeZone.getTimeZone to create time zone objects. The
Oracle time zone data types support more time zone names than JDK.

• If a result set contains a TIMESTAMPLTZ column followed by a LONG
column, then reading the LONG column results in an error.

The following code shows how the TimeZone and Calendar objects are created for
US_PACIFIC, which is a time zone name not defined in JDK:

TimeZone tz = TimeZone.getDefault();
tz.setID("US_PACIFIC");
GregorianCalendar gcal = new GregorianCalendar(tz);

The following Java classes represent the SQL date/time types:

Chapter 4
Oracle JDBC Packages

4-8

• oracle.sql.TIMESTAMP

• oracle.sql.TIMESTAMPTZ

• oracle.sql.TIMESTAMPLTZ

Before accessing TIMESTAMP WITH LOCAL TIME ZONE data, call the
OracleConnection.setSessionTimeZone(String regionName) method to set the
session time zone. When this method is called, the JDBC driver sets the session time
zone of the connection and saves the session time zone so that any TIMESTAMP WITH
LOCAL TIME ZONE data accessed through JDBC can be adjusted using the session
time zone.

Note:

TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE types
can be represented as standard java.sql.Timestamp type. The byte
representation of TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL
TIME ZONE types to java.sql.Timestamp is straight forward. This is because
the internal format of TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH
LOCAL TIME ZONE data types is GMT, and java.sql.Timestamp type objects
internally use a milliseconds time value that is the number of milliseconds
since EPOCH. However, the String representation of these data types
requires time zone information that is obtained dynamically from the server
and cached on the client side.

In earlier versions of JDBC drivers, the cache of time zone was shared
across different connections. This used to cause problems sometimes due to
incompatibility in various time zones. Starting from Oracle Database 11
Release 2 version of JDBC drivers, the time zone cache is based on the time
zone version supplied by the database. This newly designed cache avoids
any issues related to version incompatibility of time zones.

Overview of Class oracle.sql.OPAQUE

The oracle.sql.OPAQUE class provides the name and characteristics of the OPAQUE
type and any attributes. The OPAQUE type provides access only to the uninterrupted
bytes of the instance.

Note:

Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.OPAQUE
class is deprecated and replaced with the oracle.jdbc.OracleOpaque
interface, which is a part of the oracle.jdbc package. Oracle recommends
you to use the methods available in the java.sql package, where possible,
for standard compatibility and methods available in the oracle.jdbc package
for Oracle specific extensions. Refer to MoS Note 1364193.1 for more
information about the oracle.jdbc.OracleOpaque interface.

Related Topics

• Oracle Database SQL Language Reference

Chapter 4
Oracle JDBC Packages

4-9

• JDBC Java API Reference

• Working with LOBs and BFILEs

4.3.2 Package oracle.jdbc
The interfaces of the oracle.jdbc package define the Oracle extensions to the
interfaces in java.sql. These extensions provide access to Oracle SQL-format data
and other Oracle-specific functionality, including Oracle performance enhancements.

See Also:

"The oracle.jdbc Package"

4.4 Oracle Character Data Types Support
Oracle character data types include the SQL CHAR and NCHAR data types. The
following sections describe how these data types can be accessed using the
oracle.sql.* classes:

• SQL CHAR Data Types

• SQL NCHAR Data Types

• Class oracle.sql.CHAR

4.4.1 SQL CHAR Data Types
The SQL CHAR data types include CHAR, VARCHAR2, and CLOB. These data types let
you store character data in the database character set encoding scheme. The
character set of the database is established when you create the database.

4.4.2 SQL NCHAR Data Types
The SQL NCHAR data types were created for Globalization Support. The SQL NCHAR
data types include NCHAR, NVARCHAR2, and NCLOB. These data types enable you to store
Unicode data in the database NCHAR character set encoding. The NCHAR character set,
which never changes, is established when you create the database.

Note:

Because the UnicodeStream class is deprecated in favor of the
CharacterStream class, the setUnicodeStream and getUnicodeStream
methods are not supported for NCHAR data type access. Use the
setCharacterStream method and the getCharacterStream method if you
want to use stream access.

The usage of SQL NCHAR data types is similar to that of the SQL CHAR data types.
JDBC uses the same classes and methods to access SQL NCHAR data types that are

Chapter 4
Oracle Character Data Types Support

4-10

http://docs.oracle.com/database/122/JAJDB/

used for the corresponding SQL CHAR data types. Therefore, there are no separate,
corresponding classes defined in the oracle.sql package for SQL NCHAR data types.
Similarly, there is no separate, corresponding constant defined in the
oracle.jdbc.OracleTypes class for SQL NCHAR data types.

See Also:

"NCHAR_ NVARCHAR2_ NCLOB and the defaultNChar Property"

Note:

The setFormOfUse method must be called before the registerOutParameter
method is called in order to avoid unpredictable results.

The following code shows how to access SQL NCHAR data:

//
// Table TEST has the following columns:
// - NUMBER
// - NVARCHAR2
// - NCHAR
//
oracle.jdbc.OraclePreparedStatement pstmt =
 (oracle.jdbc.OraclePreparedStatement)
conn.prepareStatement("insert into TEST values(?, ?, ?)");

//
// oracle.jdbc.OraclePreparedStatement.FORM_NCHAR should be used for all NCHAR,
// NVARCHAR2 and NCLOB data types.
//

pstmt.setInt(1, 1); // NUMBER column
pstmt.setNString(2, myUnicodeString1); // NVARCHAR2 column
pstmt.setNString(3, myUnicodeString2); // NCHAR column
pstmt.execute();

4.4.3 Class oracle.sql.CHAR
The oracle.sql.CHAR class is used by Oracle JDBC in handling and converting
character data. This class provides the Globalization Support functionality to convert
character data. This class has two key attributes: Globalization Support character set
and the character data. The Globalization Support character set defines the encoding
of the character data. It is a parameter that is always passed when a CHAR object is
constructed. Without the Globalization Support character set information, the data
bytes in the CHAR object are meaningless. The oracle.sql.CHAR class is used for both
SQL CHAR and SQL NCHAR data types.

Chapter 4
Oracle Character Data Types Support

4-11

Note:

In versions of Oracle JDBC drivers prior to 10g Release 1, there were
performance advantages to using the oracle.SQL.CHAR. Starting from Oracle
Database 10g, there are no longer any such advantages. In fact, optimum
performance is achieved using the java.lang.String. All Oracle JDBC
drivers handle all character data in the Java UCS2 character set. Using the
oracle.sql.CHAR does not prevent conversions between the database
character set and UCS2 character set.

The only remaining use of the oracle.sql.CHAR class is to handle character data in
the form of raw bytes encoded in an Oracle Globalization Support character set. All
character data retrieved from Oracle Database should be accessed using the
java.lang.String class. When processing byte data from another source, you can
use an oracle.sql.CHAR to convert the bytes to java.lang.String.

To convert an oracle.sql.CHAR, you must provide the data bytes and an
oracle.sql.CharacterSet instance that represents the Globalization Support
character set used to encode the data bytes.

The CHAR objects that are Oracle object attributes are returned in the database
character set.

JDBC application code rarely needs to construct CHAR objects directly, because the
JDBC driver automatically creates CHAR objects, when it is needed to create them on
those rare occasions.

To construct a CHAR object, you must provide character set information to the CHAR
object by way of an instance of the CharacterSet class. Each instance of this class
represents one of the Globalization Support character sets that Oracle supports. A
CharacterSet instance encapsulates methods and attributes of the character set,
mainly involving functionality to convert to or from other character sets.

Constructing an oracle.sql.CHAR Object

Follow these general steps to construct a CHAR object:

1. Create a CharacterSet object by calling the static CharacterSet.make method.

This method is a factory for the character set instance. The make method takes an
integer as input, which corresponds to a character set ID that Oracle supports. For
example:

int oracleId = CharacterSet.JA16SJIS_CHARSET; // this is character set ID,
 // 832
...
CharacterSet mycharset = CharacterSet.make(oracleId);

Each character set that Oracle supports has a unique, predefined Oracle ID.

2. Construct a CHAR object.

Pass a string, or the bytes that represent the string, to the constructor along with
the CharacterSet object that indicates how to interpret the bytes based on the
character set. For example:

Chapter 4
Oracle Character Data Types Support

4-12

String mystring = "teststring";
...
CHAR mychar = new CHAR(teststring, mycharset);

There are multiple constructors for CHAR, which can take a String, a byte array, or
an object as input along with the CharacterSet object. In the case of a String, the
string is converted to the character set indicated by the CharacterSet object
before being placed into the CHAR object.

Note:

• The CharacterSet object cannot be a null value.

• The CharacterSet class is an abstract class, therefore it has no
constructor. The only way to create instances is to use the make
method.

• The server recognizes the special value
CharacterSet.DEFAULT_CHARSET as the database character set. For
the client, this value is not meaningful.

• Oracle does not intend or recommend that users extend the
CharacterSet class.

oracle.sql.CHAR Conversion Methods

The CHAR class provides the following methods for translating character data to strings:

• getString

This method converts the sequence of characters represented by the CHAR object
to a string, returning a Java String object. If you enter an invalid OracleID, then
the character set will not be recognized and the getString method will throw a
SQLException exception.

• toString

This method is identical to the getString method. But if you enter an invalid
OracleID, then the character set will not be recognized and the toString method
will return a hexadecimal representation of the CHAR data and will not throw a
SQLException exception.

• getStringWithReplacement

This method is identical to the getString method, except a default replacement
character replaces characters that have no unicode representation in the CHAR
object character set. This default character varies from character set to character
set, but is often a question mark (?).

The database server and the client, or application running on the client, can use
different character sets. When you use the methods of the CHAR class to transfer data
between the server and the client, the JDBC drivers must convert the data from the
server character set to the client character set or vice versa. To convert the data, the
drivers use Globalization Support.

Chapter 4
Oracle Character Data Types Support

4-13

See Also:

Globalization Support

4.5 Additional Oracle Type Extensions
Oracle JDBC drivers support the Oracle-specific BFILE and ROWID data types and REF
CURSOR types, which are not part of the standard JDBC specification. This section
describes the ROWID and REF CURSOR type extensions. The ROWID is supported as a
Java string, and REF CURSOR types are supported as JDBC result sets.

This section covers the following topics:

• Oracle ROWID Type

• Oracle REF CURSOR Type Category

• Oracle BINARY_FLOAT and BINARY_DOUBLE Types

• Oracle SYS.ANYTYPE and SYS.ANYDATA Types

• The oracle.jdbc Package

4.5.1 Oracle ROWID Type
A ROWID is an identification tag unique for each row of an Oracle Database table. The
ROWID can be thought of as a virtual column, containing the ID for each row.

The oracle.sql.ROWID class is supplied as a container for ROWID SQL data type.

ROWIDs provide functionality similar to the getCursorName method specified in the
java.sql.ResultSet interface and the setCursorName method specified in the
java.sql.Statement interface.

If you include the ROWID pseudo-column in a query, then you can retrieve the
ROWIDs with the result set getString method. You can also bind a ROWID to a
PreparedStatement parameter with the setString method. This enables in-place
updating, as in the example that follows.

Note:

Use the oracle.sql.ROWID class, only when you are using J2SE 5.0. For
JSE 6, you should use the standard java.sql.RowId interface instead.

Example

The following example shows how to access and manipulate ROWID data:

Chapter 4
Additional Oracle Type Extensions

4-14

Note:

The following example works only with JSE 6.

Statement stmt = conn.createStatement();

// Query the employee names with "FOR UPDATE" to lock the rows.
// Select the ROWID to identify the rows to be updated.

ResultSet rset =
 stmt.executeQuery ("SELECT first_name, rowid FROM employees FOR UPDATE");

// Prepare a statement to update the first_name column at a given ROWID

PreparedStatement pstmt =
 conn.prepareStatement ("UPDATE employees SET first_name = ? WHERE rowid = ?");

// Loop through the results of the query
while (rset.next ())
{
 String ename = rset.getString (1);
 RowId rowid = rset.getROWID(2); // Get the ROWID as a String
 pstmt.setString (1, ename.toLowerCase ());
 pstmt.setROWID (2, rowid); // Pass ROWID to the update statement
 pstmt.executeUpdate (); // Do the update
}

4.5.2 Oracle REF CURSOR Type Category
A cursor variable holds the memory location of a query work area, rather than the
contents of the area. Declaring a cursor variable creates a pointer. In SQL, a pointer
has the data type REF x, where REF is short for REFERENCE and x represents the entity
being referenced. A REF CURSOR, then, identifies a reference to a cursor variable.
Because many cursor variables might exist to point to many work areas, REF CURSOR
can be thought of as a category or data type specifier that identifies many different
types of cursor variables. Starting from Oracle Database Release 18 c, JDBC drivers
support REF CURSOR as IN bind variables.

Note:

REF CURSOR instances are not scrollable.

Perform the following steps to create a cursor variable:

1. Identify a type that belongs to the REF CURSOR category. For example:

DECLARE TYPE DeptCursorTyp IS REF CURSOR

Chapter 4
Additional Oracle Type Extensions

4-15

2. Then, create the cursor variable by declaring it to be of the type DeptCursorTyp:

dept_cv DeptCursorTyp - - declare cursor variable
...

REF CURSOR, then, is a category of data types, rather than a particular data type.

Stored procedures can accept or return cursor variables of the REF CURSOR category.
This output is equivalent to a database cursor or a JDBC result set. A REF CURSOR
essentially encapsulates the results of a query.

In JDBC, a REF CURSOR can be accessed as follows:

1. Use a JDBC callable statement or a prepared statement to call a stored
procedure.

2. The stored procedure accepts or returns a REF CURSOR.

3. The Java application casts the callable statement or prepared statement to an
Oracle callable statement or Oracle prepared statement.

4. The Java application uses the setCursor method of the
OraclePreparedStatement interface or the getCursor method of the
OracleCallableStatement interface to materialize the REF CURSOR as a JDBC
ResultSet object.

5. The result set is processed as requested.

Note:

• The cursor associated with a REF CURSOR is closed whenever the
statement object that produced the REF CURSOR is closed.

• Unlike in past releases, the cursor associated with a REF CURSOR is
not closed when the result set object in which the REF CURSOR was
materialized is closed.

Example

This example shows how to access REF CURSOR data.

 ...
 // Prepare a PL/SQL call
 CallableStatement cstmt =
 conn.prepareCall ("DECLARE rc sys_refcursor; curid NUMBER;BEGIN
open rc FOR SELECT empno FROM emp order by empno; ? := rc; END;");

 cstmt.registerOutParameter (1, OracleTypes.CURSOR);
 cstmt.execute ();
 ResultSet rset = (ResultSet)cstmt.getObject (1);

 if (rset.next ()) {
 show (rset.getString ("empno"));
 }

Chapter 4
Additional Oracle Type Extensions

4-16

 CallableStatement cstmt2 =
 conn.prepareCall ("DECLARE rc sys_refcursor; v1 NUMBER; BEGIN
rc := ?; fetch rc INTO v1; ? := v1; END;");
 ((OracleCallableStatement)call2).setCursor(1, rset);
 cstmt2.registerOutParameter (2, OracleTypes.INTEGER);

 cstmt2.execute();

 int empno = cstmt2.getInt(2);

 show("Fetch in PL/SQL empno=" + empno);

 // Dump the cursor
 while (rset.next ())
 show (rset.getString ("empno"));

 // Close all the resources
 rset.close();
 cstmt.close();
 cstmt2.close();
 ...

In the preceding example:

• Two CallableStatement objects cstmt1 and cstmt2 are created using the
prepareCall method of the Connection class.

• The cstmt2 callable statement uses REF CURSOR as input parameter.

• The callable statements implement PL/SQL procedure that returns a REF CURSOR.

• As always, the output parameter of the callable statement must be registered to
define its type. Use the type code OracleTypes.CURSOR for a REF CURSOR.

• The callable statements are run, returning the REF CURSOR or sending the REF
CURSOR as input bind.

4.5.3 Oracle BINARY_FLOAT and BINARY_DOUBLE Types
The Oracle BINARY_FLOAT and BINARY_DOUBLE types are used to store IEEE 574 float
and double data. These correspond to the Java float and double scalar types with
the exception of negative zero and NaN.

See Also:

Oracle Database SQL Language Reference

If you include a BINARY_DOUBLE column in a query, then the data is retrieved from the
database in the binary format. Also, the getDouble method will return the data in the
binary format. In contrast, for a NUMBER data type column, the number bits are returned
and converted to the Java double data type.

Chapter 4
Additional Oracle Type Extensions

4-17

Note:

The Oracle representation for the SQL FLOAT, DOUBLE PRECISION, and REAL
data types use the Oracle NUMBER representation. The BINARY_FLOAT and
BINARY_DOUBLE data types can be regarded as proprietary types.

A call to the JDBC standard setDouble(int, double) method of the
PreparedStatement interface converts the Java double argument to Oracle NUMBER
style bits and send them to the database. In contrast, the setBinaryDouble(int,
double) method of the oracle.jdbc.OraclePreparedStatement interface converts the
data to the internal binary bits and sends them to the database.

You must ensure that the data format used matches the type of the target parameter
of the PreparedStatement interface. This will result in correct data and least use of
CPU. If you use setBinaryDouble for a NUMBER parameter, then the binary bits are
sent to the server and converted to NUMBER format. The data will be correct, but server
CPU load will be increased. If you use setDouble for a BINARY_DOUBLE parameter, then
the data will first be converted to NUMBER bits on the client and sent to the server,
where it will be converted back to binary format. This will increase the CPU load on
both client and server and can result in data corruption as well.

The SetFloatAndDoubleUseBinary connection property when set to true causes the
JDBC standard APIs, setFloat(int, float), setDouble(int, double), and all the
variations, to send internal binary bits instead of NUBMER bits.

Note:

Although this section largely discusses BINARY_DOUBLE, the same is true for
BINARY_FLOAT as well.

4.5.4 Oracle SYS.ANYTYPE and SYS.ANYDATA Types
Oracle Database 12c Release 1 (12.1) provides a Java interface to access the
SYS.ANYTYPE and SYS.ANYDATA Oracle types.

See Also:

For information about these Oracle types, refer Oracle Database PL/SQL
Packages and Types Reference

An instance of the SYS.ANYTYPE type contains a type description of any SQL type,
persistent or transient, named or unnamed, including object types and collection types.
You can use the oracle.sql.TypeDescriptor class to access the SYS.ANYTYPE type.
An ANYTYPE instance can be retrieved from a PL/SQL procedure or a SQL SELECT
statement where SYS.ANYTYPE is used as a column type. To retrieve an ANYTYPE
instance from the database, use the getObject method. This method returns an
instance of the TypeDescriptor.

Chapter 4
Additional Oracle Type Extensions

4-18

The retrieved ANYTYPE instance could be any of the following:

• Transient object type

• Transient predefined type

• Persistent object type

• Persistent predefined type

Example 4-1 Accessing SYS.ANYTYPE Type

The following code snippet illustrates how to retrieve an instance of ANYTYPE from the
database:

...
ResultSet rs = stmt.executeQuery("select anytype_column from my_table");
TypeDescriptor td = (TypeDescriptor)rs.getObject(1);
short typeCode = td.getInternalTypeCode();
if(typeCode == TypeDescriptor.TYPECODE_OBJECT)
{
 // check if it's a transient type
 if(td.isTransientType())
 {
 AttributeDescriptor[] attributes =
((StructDescriptor)td).getAttributesDescriptor();
 for(int i=0; i<attributes.length; i++)
 System.out.println(attributes[i].getAttributeName());
 }
 else
 { System.out.println(td.getTypeName()); }}
...

Example 4-2 Creating a Transient Object Type Through PL/SQL and Retrieving
Through JDBC

This example provides a code snippet illustrating how to retrieve a transient object
type through JDBC.

...
OracleCallableStatement cstmt = (OracleCallableStatement)conn.prepareCall
 ("BEGIN ? := transient_obj_type (); END;");
cstmt.registerOutParameter(1,OracleTypes.OPAQUE,"SYS.ANYTYPE");
cstmt.execute();
TypeDescriptor obj = (TypeDescriptor)cstmt.getObject(1);
if(!obj.isTransient())
 System.out.println("This must be a JDBC bug");
cstmt.close();
return obj;
...

Example 4-3 Calling a PL/SQL Stored Procedure That Takes an ANYTPE as IN
Parameter

The following code snippet illustrates how to call a PL/SQL stored procedure that
takes an ANYTYPE as IN parameter:

...
CallableStatement cstmt = conn.prepareCall("BEGIN ? := dumpanytype(?); END;");
cstmt.registerOutParameter(1,OracleTypes.VARCHAR);
// obj is the instance of TypeDescriptor that you have retrieved
cstmt.setObject(2,obj);
cstmt.execute();

Chapter 4
Additional Oracle Type Extensions

4-19

String str = (String)cstmt.getObject(1);
...

The oracle.sql.ANYDATA class enables you to access SYS.ANYDATA instances from
the database. An instance of this class can be obtained from any valid instance of
oracle.sql.Datum class. The convertDatum factory method takes an instance of
Datum and returns an instance of ANYDATA. The syntax for this factory method is as
follows:

public static ANYDATA convertDatum(Datum datum) throws SQLException

The following is sample code for creating an instance of oracle.sql.ANYDATA:

// struct is a valid instance of oracle.sql.STRUCT that either comes from the
// database or has been constructed in Java.
ANYDATA myAnyData = ANYDATA.convertDatum(struct);

Example 4-4 Accessing an Instance of ANYDATA from the Database

...
// anydata_table has been created as:
// CREATE TABLE anydata_tab (data SYS.ANYDATA)
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select data from my_anydata_tab");
while(rs.next())
{
 ANYDATA anydata = (ANYDATA)rs.getObject(1);
 if(!anydata.isNull())
 {
 TypeDescriptor td = anydata.getTypeDescriptor();
 if(td.getTypeCode() == OracleType.TYPECODE_OBJECT)
 STRUCT struct = (STRUCT)anydata.accessDatum();
 }
}
...

Example 4-5 Inserting an Object as ANYDATA in a Database Table

Consider the following table and object type definition:

CREATE TABLE anydata_tab (id NUMBER, data SYS.ANYDATA)

CREATE OR REPLACE TYPE employee AS OBJECT (employee_id NUMBER, first_name
VARCHAR2(10))

You can create an instance of the EMPLOYEE SQL object type and to insert it into
anydata_table in the following way:

...
PreparedStatement pstmt = conn.prepareStatement("insert into anydata_table values
(?,?)");
Struct myEmployeeStr = conn.createStruct("EMPLOYEE", new Object[]{1120, "Papageno"});
ANYDATA anyda = ANYDATA.convertDatum(myEmployeeStr);
pstmt.setInt(1,123);
pstmt.setObject(2,anyda);
pstmt.executeUpdate();
...

Chapter 4
Additional Oracle Type Extensions

4-20

Example 4-6 Selecting an ANYDATA Column from a Database Table

...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select data from anydata_table");
while(rs.next())
{
 ANYDATA obj = (ANYDATA)rs.getObject(1);
 TypeDescriptor td = obj.getTypeDescriptor();
}
rs.close();
stmt.close();
...

4.5.5 The oracle.jdbc Package
The interfaces of the oracle.jdbc package define the Oracle extensions to the
interfaces in java.sql. These extensions provide access to SQL-format data as
described in this chapter. They also provide access to other Oracle-specific
functionality, including Oracle performance enhancements.

For the oracle.jdbc package, Table 4-1 lists key interfaces and classes used for
connections, statements, and result sets.

Table 4-1 Key Interfaces and Classes of the oracle.jdbc Package

Name Interface
or Class

Key Functionality

OracleDriver Class Implements java.sql.Driver

OracleConnection Interface Provides methods to start and stop an
Oracle Database instance and to return
Oracle statement objects and methods to
set Oracle performance extensions for any
statement run in the current connection.

Implements java.sql.Connection.

OracleStatement Interface Provides methods to set Oracle
performance extensions for individual
statement.

Is a supertype of
OraclePreparedStatement and
OracleCallableStatement.

Implements java.sql.Statement.

OraclePreparedStatement Interface Provides setXXX methods to bind
oracle.sql.* types into a prepared
statement.

Provides getMetaData method to get the
metadata from the prepared statements
without executing the SELECT statements.

Implements
java.sql.PreparedStatement.

Extends OracleStatement.

Is a supertype of
OracleCallableStatement.

Chapter 4
Additional Oracle Type Extensions

4-21

Table 4-1 (Cont.) Key Interfaces and Classes of the oracle.jdbc Package

Name Interface
or Class

Key Functionality

OracleCallableStatement Interface Provides getXXX methods to retrieve data
in oracle.sql format and setXXX
methods to bind oracle.sql.* types into
a callable statement.

Implements
java.sql.CallableStatement.

Extends OraclePreparedStatement.

OracleResultSet Interface Provides getXXX methods to retrieve data
in oracle.sql format.

Implements java.sql.ResultSet.

OracleResultSetMetaData Interface Provides methods to get metadata
information about Oracle result sets, such
as column names and data types.

Implements
java.sql.ResultSetMetaData.

OracleDatabaseMetaData Class Provides methods to get metadata
information about the database, such as
database product name and version, table
information, and default transaction
isolation level.

Implements
java.sql.DatabaseMetaData).

OracleTypes Class Defines integer constants used to identify
SQL types.

For standard types, it uses the same values
as the standard java.sql.Types class. In
addition, it adds constants for Oracle
extended types.

OracleArray Interface Includes functionality to retrieve the array
as a whole, retrieve a subset of the array
elements, and retrieve the SQL base type
name of the array elements.

OracleStruct Interface

OracleClob Interface

OracleBlob Interface

OracleRef Interface

OracleOpaque Interface

This section covers the following topics:

• Interface oracle.jdbc.OracleConnection

• Interface oracle.jdbc.OracleStatement

• Interface oracle.jdbc.OraclePreparedStatement

• Interface oracle.jdbc.OracleCallableStatement

Chapter 4
Additional Oracle Type Extensions

4-22

• Interface oracle.jdbc.OracleResultSet

• Interface oracle.jdbc.OracleResultSetMetaData

• Class oracle.jdbc.OracleTypes

4.5.5.1 Interface oracle.jdbc.OracleConnection
This interface extends standard JDBC connection functionality to create and return
Oracle statement objects, set flags and options for Oracle performance extensions,
support type maps for Oracle objects, and support client identifiers.

In Oracle Database 11g Release 1, new methods were added to this interface that
enable the starting up and shutting down of an Oracle Database instance. Also, for
better visibility and clarity, all connection properties are defined as constants in the
OracleConnection interface.

This interface also defines factory methods for constructing oracle.sql data values
like DATE and NUMBER. Remember the following points while using factory methods:

• All code that constructs instances of the oracle.sql types should use the Oracle
extension factory methods. For example, ARRAY, BFILE, DATE, INTERVALDS, NUMBER,
STRUCT, TIME, TIMESTAMP, and so on.

• All code that constructs instances of the standard types should use the JDBC 4.0
standard factory methods. For example, CLOB, BLOB, NCLOB, and so on.

• There are no factory methods for CHAR, JAVA_STRUCT, ArrayDescriptor, and
StructDescriptor. These types are for internal driver use only.

Note:

Prior to Oracle Database 11g Release 1, you had to construct
ArrayDescriptors and StructDescriptors for passing as arguments to
the ARRAY and STRUCT class constructors. The new ARRAY and Struct
factory methods do not have any descriptor arguments. The driver still
uses descriptors internally, but you do not need to create them.

Client Identifiers

In a connection pooling environment, the client identifier can be used to identify the
lightweight user using the database session currently. A client identifier can also be
used to share the Globally Accessed Application Context between different database
sessions. The client identifier set in a database session is audited when database
auditing is turned on.

See Also:

Oracle Database JDBC Java API Reference for more information

Chapter 4
Additional Oracle Type Extensions

4-23

4.5.5.2 Interface oracle.jdbc.OracleStatement
This interface extends standard JDBC statement functionality and is the superinterface
of the OraclePreparedStatement and OracleCallableStatement classes. Extended
functionality includes support for setting flags and options for Oracle performance
extensions on a statement-by-statement basis, as opposed to the OracleConnection
interface that sets these on a connectionwide basis.

4.5.5.3 Interface oracle.jdbc.OraclePreparedStatement
This interface extends the OracleStatement interface and extends standard JDBC
prepared statement functionality. Also, the oracle.jdbc.OraclePreparedStatement
interface is extended by the OracleCallableStatement interface. Extended
functionality consists of the following:

• setXXX methods for binding oracle.sql.* types and objects to prepared
statements

• getMetaData method to get the metadata from the prepared statements without
executing the SELECT statements

• Methods to support Oracle performance extensions on a statement-by-statement
basis

Note:

Do not use the PreparedStatement interface to create a trigger that refers to
a:NEW or :OLD column. Use Statement instead. Using PreparedStatement
will cause execution to fail with the message java.sql.SQLException:
Missing IN or OUT parameter at index:: 1.

4.5.5.4 Interface oracle.jdbc.OracleCallableStatement
This interface extends the OraclePreparedStatement interface, which extends the
OracleStatement interface and incorporates standard JDBC callable statement
functionality.

Note:

Do not use the CallableStatement interface to create a trigger that refers to
a:NEW or :OLD column. Use Statement instead; using CallableStatement will
cause execution to fail with the message java.sql.SQLException: Missing
IN or OUT parameter at index::1

Chapter 4
Additional Oracle Type Extensions

4-24

Note:

• The setXXX(String,...) and registerOutParameter(String,...)
methods can be used only if all binds are procedure or function
parameters only. The statement can contain no other binds and the
parameter binds must be indicated with a question mark (?) and not :XX.

• If you are using setXXX(int,...) or setXXXAtName(String,...)
method, then any output parameter is bound with
registerOutParameter(int,...) and not
registerOutParameter(String,...), which is for named parameter
notation.

4.5.5.5 Interface oracle.jdbc.OracleResultSet
This interface extends standard JDBC result set functionality, implementing getXXX
methods for retrieving data into oracle.sql.* objects.

4.5.5.6 Interface oracle.jdbc.OracleResultSetMetaData
This interface extends standard JDBC result set metadata functionality to retrieve
information about Oracle result set objects.

See Also:

"Using Result Set Metadata Extensions"

4.5.5.7 Class oracle.jdbc.OracleTypes
The OracleTypes class defines constants that JDBC uses to identify SQL types. Each
variable in this class has a constant integer value. The oracle.jdbc.OracleTypes
class duplicates the type code definitions of the standard Java java.sql.Types class
and contains these additional type codes for Oracle extensions:

• OracleTypes.BFILE

• OracleTypes.ROWID

• OracleTypes.CURSOR (for REF CURSOR types)

• OracleTypes.CHAR_BYTES (for calling setNull and setCHAR methods on the same
column)

As in java.sql.Types, all the variable names are in uppercase text.

JDBC uses the SQL types identified by the elements of the OracleTypes class in two
main areas: registering output parameters and in the setNull method of the
PreparedStatement class.

Chapter 4
Additional Oracle Type Extensions

4-25

OracleTypes and Registering Output Parameters

The type codes in java.sql.Types or oracle.jdbc.OracleTypes identify the SQL
types of the output parameters in the registerOutParameter method of the
java.sql.CallableStatement and oracle.jdbc.OracleCallableStatement
interfaces.

These are the forms that the registerOutputParameter method can take for the
CallableStatement and OracleCallableStatement interfaces

cs.registerOutParameter(int index, int sqlType);

cs.registerOutParameter(int index, int sqlType, String sql_name);

cs.registerOutParameter(int index, int sqlType, int scale);

In these signatures, index represents the parameter index, sqlType is the type code
for the SQL data type, sql_name is the name given to the data type, for user-defined
types, when sqlType is a STRUCT, REF, or ARRAY type code, and scale represents the
number of digits to the right of the decimal point, when sqlType is a NUMERIC or
DECIMAL type code.

The following example uses a CallableStatement interface to call a procedure named
charout, which returns a CHAR data type. Note the use of the OracleTypes.CHAR type
code in the registerOutParameter method.

CallableStatement cs = conn.prepareCall ("BEGIN charout (?); END;");
cs.registerOutParameter (1, OracleTypes.CHAR);
cs.execute ();
System.out.println ("Out argument is: " + cs.getString (1));

The next example uses a CallableStatement interface to call structout, which
returns a STRUCT data type. The form of registerOutParameter requires you to specify
the type code, Types.STRUCT or OracleTypes.STRUCT, as well as the SQL name,
EMPLOYEE.

The example assumes that no type mapping has been declared for the EMPLOYEE type,
so it is retrieved into a STRUCT data type. To retrieve the value of EMPLOYEE as an
oracle.sql.STRUCT object, the statement object cs is cast to
OracleCallableStatement and the Oracle extension getSTRUCT method is invoked.

CallableStatement cs = conn.prepareCall ("BEGIN structout (?); END;");
cs.registerOutParameter (1, OracleTypes.STRUCT, "EMPLOYEE");
cs.execute ();

// get the value into a STRUCT because it
// is assumed that no type map has been defined
STRUCT emp = ((OracleCallableStatement)cs).getSTRUCT (1);

OracleTypes and the setNull Method

The type codes in Types and OracleTypes identify the SQL type of the data item,
which the setNull method sets to NULL. The setNull method can be found in the
java.sql.PreparedStatement and oracle.jdbc.OraclePreparedStatement
interfaces.

These are the forms that the setNull method can take for the PreparedStatement and
OraclePreparedStatement objects:

Chapter 4
Additional Oracle Type Extensions

4-26

ps.setNull(int index, int sqlType);

ps.setNull(int index, int sqlType, String sql_name);

In these signatures, index represents the parameter index, sqlType is the type code
for the SQL data type, and sql_name is the name given to the data type, for user-
defined types, when sqlType is a STRUCT, REF, or ARRAY type code. If you enter an
invalid sqlType, a ParameterTypeConflict exception is thrown.

The following example uses a prepared statement to insert a null value into the
database. Note the use of OracleTypes.NUMERIC to identify the numeric object set to
NULL. Alternatively, Types.NUMERIC can be used.

PreparedStatement pstmt =
 conn.prepareStatement ("INSERT INTO num_table VALUES (?)");

pstmt.setNull (1, OracleTypes.NUMERIC);
pstmt.execute ();

In this example, the prepared statement inserts a NULL STRUCT object of type EMPLOYEE
into the database.

PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO employees VALUES (?)");

pstmt.setNull (1, OracleTypes.STRUCT, "EMPLOYEE");
pstmt.execute ();

You can also use the OracleTypes.CHAR_BYTES type with the setNull method, if you
also want to call the setCHAR method on the same column. For example:

 ps.setCHAR(n, aCHAR);
 ps.addBatch();
 ps.setNull(n, OracleTypes.CHAR_BYTES);
 ps.addBatch();

In this preceding example, any other type, apart from the OracleTypes.CHAR_BYTES
type, will cause extra round trips to the Database. Alternatively, you can also write
your code without using the setNull method. For example, you can also write your
code as shown in the following example:

ps.setCHAR(n, null);

4.6 DML Returning
The DML returning feature provides more functionality compared to retrieval of auto-
generated keys. It can be used to retrieve not only auto-generated keys, but also other
columns or values that the application may use.

Chapter 4
DML Returning

4-27

Note:

• The server-side internal driver does not support DML returning and
retrieval of auto-generated keys.

• You cannot use both DML returning and retrieval of auto-generated keys
in the same statement.

The following sections explain the support for DML returning:

• Oracle-Specific APIs

• About Running DML Returning Statements

• Example of DML Returning

• Limitations of DML Returning

See Also:

"Retrieval of Auto-Generated Keys"

4.6.1 Oracle-Specific APIs
The OraclePreparedStatement interface is enhanced with Oracle-specific application
programming interfaces (APIs) to support DML returning. The
registerReturnParameter and getReturnResultSet methods have been added to the
oracle.jdbc.OraclePreparedStatement interface, to register parameters that are
returned and data retrieved by DML returning.

The registerReturnParameter method is used to register the return parameter for
DML returning. The method throws a SQLException instance if an error occurs. You
must pass a positive integer specifying the index of the return parameter. You also
must specify the type of the return parameter. You can also specify the maximum
bytes or characters of the return parameter. This method can be used only with char
or RAW types. You can also specify the fully qualified name of a SQL structure type.

Note:

If you do not know the maximum size of the return parameters, then you
should use registerReturnParameter(int paramIndex, int
externalType), which picks the default maximum size. If you know the
maximum size of return parameters, using registerReturnParameter(int
paramIndex, int externalType, int maxSize) can reduce memory
consumption.

The getReturnResultSet method fetches the data returned from DML returning and
returns it as a ResultSet object. The method throws a SQLException exception if an
error occurs.

Chapter 4
DML Returning

4-28

Note:

The Oracle-specific APIs for the DML returning feature are in ojdbc6.jar for
Java Development Kit (JDK) 6.0 and in ojdbc7.jar for JDK 7.

4.6.2 About Running DML Returning Statements
Before running a DML returning statement, the JDBC application must call one or
more of the registerReturnParameter methods. The method provides the JDBC
drivers with information, such as type and size, of the return parameters. The DML
returning statement is then processed using one of the standard JDBC APIs,
executeUpdate or execute. You can then fetch the returned parameters as a
ResultSet object using the getReturnResultSet method of the
oracle.jdbc.OraclePreparedStatement interface.

In order to read the values in the ResultSet object, the underlying Statement object
must be open. When the underlying Statement object is closed, the returned
ResultSet object is also closed. This is consistent with ResultSet objects that are
retrieved by processing SQL query statements.

When a DML returning statement is run, the concurrency of the ResultSet object
returned by the getReturnResultSet method must be CONCUR_READ_ONLY and the type
of the ResultSet object must be TYPE_FORWARD_ONLY or TYPE_SCROLL_INSENSITIVE.

4.6.3 Example of DML Returning
This section provides two code examples of DML returning.

The following code example illustrates the use of DML returning. In this example,
assume that the maximum size of the name column is 100 characters. Because the
maximum size of the name column is known, the registerReturnParameter(int
paramIndex, int externalType, int maxSize) method is used.

...
OraclePreparedStatement pstmt = (OraclePreparedStatement)conn.prepareStatement(
 "delete from tab1 where age < ? returning name into ?");
pstmt.setInt(1,18);

/** register returned parameter
 * in this case the maximum size of name is 100 chars
 */
pstmt.registerReturnParameter(2, OracleTypes.VARCHAR, 100);

// process the DML returning statement
count = pstmt.executeUpdate();
if (count>0)
{
 ResultSet rset = pstmt.getReturnResultSet(); //rest is not null and not empty
 while(rset.next())
 {
 String name = rset.getString(1);
 ...
 }
}
...

Chapter 4
DML Returning

4-29

The following code example also illustrates the use of DML returning. However, in this
case, the maximum size of the return parameters is not known. Therefore, the
registerReturnParameter(int paramIndex, int externalType) method is used.

...
OraclePreparedStatement pstmt = (OraclePreparedStatement)conn.prepareStatement(
 "insert into lobtab values (100, empty_clob()) returning col1, col2 into ?, ?");

// register return parameters
pstmt.registerReturnParameter(1, OracleTypes.INTEGER);
pstmt.registerReturnParameter(2, OracleTypes.CLOB);

// process the DML returning SQL statement
pstmt.executeUpdate();
ResultSet rset = pstmt.getReturnResultSet();
int r;
CLOB clob;
if (rset.next())
{
 r = rset.getInt(1);
 System.out.println(r);
 clob = (CLOB)rset.getClob(2);
 ...
}
...

4.6.4 Limitations of DML Returning
When using DML returning, be aware of the following:

• It is unspecified what the getReturnResultSet method returns when it is invoked
more than once. You should not rely on any specific action in this regard.

• The ResultSet objects returned from the execution of DML returning statements
do not support the ResultSetMetaData type. Therefore, the applications must
know the information of return parameters before running DML returning
statements.

• Streams are not supported with DML returning.

• DML returning cannot be combined with batch update.

• You cannot use both the auto-generated key feature and the DML returning
feature in a single SQL DML statement. For example, the following is not allowed:

...
PreparedStatement pstmt = conn.prepareStatement('insert into orders (?, ?, ?)
returning order_id into ?");
pstmt.setInt(1, seq01.NEXTVAL);
pstmt.setInt(2, 100);
pstmt.setInt(3, 966431502);
pstmt.registerReturnParam(4, OracleTypes.INTEGER);
pstmt.executeUpdate;
ResultSet rset = pstmt.getGeneratedKeys;
...

Chapter 4
DML Returning

4-30

4.7 Accessing PL/SQL Associative Arrays
Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with Associative
Arrays parameters. In PL/SQL, an Associative Array is a set of key-value pairs, where
the keys may be PLS_INTEGERs or Strings. The keys may have any value and need not
be dense. From a client application, you can work only with PLS_INTEGER or
BINARY_INTEGER keys.

Note:

The PLS_INTEGER and BINARY_INTEGER are identical data types.

The previous release of Oracle JDBC drivers provided support only for PL/SQL
Associative Arrays of Scalar data types. Also, the support was restricted only to the
values of the key-value pairs of the Arrays. Oracle Database Release 18c supports
accessing both the keys (indexes) and values of Associative Arrays, and also provides
support for Associative Arrays of object types. Use the following methods to achieve
the new functionalities:

• Array createOracleArray(String arrayTypeName,

 Object elements)

 throws SQLException

• ARRAY createARRAY(String typeName,

 Object elements)

 throws SQLException

In both the preceding methods, the second parameter can either be a
java.util.Map<Integer, ?> that holds the key-value pairs of the Associative
Arrays, or it can only be an array of values. If it is an array of values, then the
JDBC driver defaults the indexes to 0,1,2 and so on. If it is
java.util.Map<Integer, ?>, then the JDBC driver does not default the keys.
They remain as specified in the Map, and can be sparse and negative.

• Map<?,?> oracle.jdbc.OracleArray.getJavaMap();

This method returns a Map<?,?> for the data types in the Associative Array and
null for Nested Tables and VARRAYs.

Chapter 4
Accessing PL/SQL Associative Arrays

4-31

Note:

• Associative Arrays were previously known as index-by tables.

• When you use String data types, the size is limited to the size in PL/SQL
that is 32767 characters. For the server-side internal driver, the limits are
lower.

See Also:

• Oracle Database JDBC Java API Reference

• Oracle Database PL/SQL Language Reference

for more information about Associative Arrays

Chapter 4
Accessing PL/SQL Associative Arrays

4-32

5
Features Specific to JDBC Thin

This chapter introduces the Java Database Connectivity (JDBC) Thin client and covers
the following features supported only by the JDBC Thin driver:

• Overview of JDBC Thin Client

• Additional Features Supported

5.1 Overview of JDBC Thin Client
The JDBC Thin client is a pure Java, Type IV driver. It is lightweight and easy to
install. It provides high performance, comparable to the performance provided by the
JDBC Oracle Call Interface (OCI) driver. The JDBC Thin driver is written entirely in
Java, and therefore, it is platform-independent. Also, this driver does not require any
additional Oracle software on the client-side.

The JDBC Thin driver communicates with the server using TTC, a protocol developed
by Oracle to access data from Oracle Database. It can be used for application servers.
The driver allows a direct connection to the database by providing an implementation
of TCP/IP that implements Oracle Net and TTC on top of Java sockets. Both of these
protocols are lightweight implementation versions of their counterparts on the server.
The Oracle Net protocol runs over TCP/IP only.

The JDBC Thin driver can be used on both the client-side and the server-side. On the
client-side, drivers can be used in Java applications that run either on the client or in
the middle tier of a three-tier configuration. On the server-side, this driver is used to
access a remote Oracle Database instance or another session on the same database.

5.2 Additional Features Supported
The JDBC Thin driver supports all standard JDBC features. The JDBC Thin driver also
provides support for the following additional features:

• Default Support for Native XA

• Support for Transaction Guard

• Support for Application Continuity

5.2.1 Default Support for Native XA
Similar to the JDBC OCI driver, the JDBC Thin driver also provides support for Native
XA. However, the JDBC Thin driver provides support for Native XA by default. This is
unlike the case of the JDBC OCI driver, in which the support for Native XA is not
enabled by default.

5-1

See Also:

"Native-XA in Oracle JDBC Drivers"

5.2.2 Support for Transaction Guard
Transaction Guard feature provides a generic infrastructure for at-most-once execution
during planned and unplanned outages and duplicate submissions. Transaction Guard
feature (along with Application Continuity feature) provides transparent session
recovery and replay of SQL statements (queries and DMLs) since the beginning of the
in-flight transaction.

See Also:

Transaction Guard for Java

5.2.3 Support for Application Continuity
Application Continuity provides a general purpose, application-independent
infrastructure that enables recovery of work from an application perspective, after the
occurrence of a planned or unplanned outage. It provides the following benefits:

• Masking of outages from the end user

• Recovery of user environments, in-flight transactions, and lost outcome

• A single, easy, and foolproof method for applications to recover

• A definite target response time for applications, regardless of outages

See Also:

Application Continuity for Java

Chapter 5
Additional Features Supported

5-2

6
Features Specific to JDBC OCI Driver

This chapter introduces the features specific to the Java Database Connectivity
(JDBC) Oracle Call Interface (OCI) driver. It also describes the OCI Instant Client. This
chapter contains the following sections:

• OCI Connection Pooling

• Transparent Application Failover

• OCI Native XA

• OCI Instant Client

• About Instant Client Light (English)

6.1 OCI Connection Pooling
The OCI connection pooling feature is an Oracle-designed extension. The connection
pooling provided by the JDBC OCI driver enables applications to have multiple logical
connections, all of which are using a small set of physical connections. Each call on a
logical connection is routed on to the physical connection that is available at the given
time.

See Also:

OCI Connection Pooling

6.2 Transparent Application Failover
The Transparent Application Failover feature of JDBC OCI driver enables you to
automatically reconnect to a database if the database instance to which the
connection is made goes down. The new database connection, though created by a
different node, is identical to the original.

See Also:

Transparent Application Failover

6.3 OCI Native XA
The JDBC OCI driver also provides a feature called Native XA. This feature enables to
use native APIs to send XA commands. The native APIs provide high performance
gains as compared to non-native APIs.

6-1

Related Topics

• OCI Native XA

6.4 OCI Instant Client
This section covers the following topics:

• Overview of Instant Client

• OCI Instant Client Shared Libraries

• Benefits of Instant Client

• JDBC OCI Instant Client Installation Process

• Usage of Instant Client

• About Patching Instant Client Shared Libraries

• Regeneration of Data Shared Library and ZIP files

• Database Connection Names for OCI Instant Client

• Environment Variables for OCI Instant Client

6.4.1 Overview of Instant Client
The Instant Client is packaged in a way that makes it extremely easy to deploy OCI,
Oracle C++ Call Interface (OCCI), Open Database Connectivity (ODBC), and JDBC-
OCI based customer applications, by eliminating the need for an Oracle home. The
storage space requirement of a JDBC OCI application using the Instant Client is
significantly reduced compared to the same application running on a full client-side
installation. The Instant Client shared libraries occupy only about one-fourth the disk
space used by a full client installation.

6.4.2 OCI Instant Client Shared Libraries
You must have the Oracle client-side files required to deploy a JDBC OCI application.
The library names mentioned in this table correspond to Oracle Database Release
18c. The number part of library names will change in future releases to agree with the
release.

Table 6-1 OCI Instant Client Shared Libraries

Linux and UNIX
Systems

Description for Linux and
UNIX Systems

Microsoft
Windows

Description for Microsoft
Windows

libclntsh.so.
18.1

libclntshcore.so
.18.11

Client Code Library oci.dll Forwarding functions that
applications link with

libociei.so2 OCI Instant Client Data Shared
Library

oraociei18.dll Data and code

libnnz18.so Security Library orannzsbb18.dll Security Library

libocijdbc18.so OCI Instant Client JDBC Library ocijdbc18.dll OCI Instant Client JDBC Library

Chapter 6
OCI Instant Client

6-2

Table 6-1 (Cont.) OCI Instant Client Shared Libraries

Linux and UNIX
Systems

Description for Linux and
UNIX Systems

Microsoft
Windows

Description for Microsoft
Windows

ALL JDBC Java
Archive (JAR) files

See Also: "Checking the
Environment Variables"

All JDBC JAR files See Also: "Checking the
Environment Variables"

1 Beginning with Oracle Database 12c Release 1, the libclntshcore.so.<release number> library is separated from
the libclntsh.so.<release number> library and the data shared library.

2 The libclntsh.so.18.1 library, the libclntshcore.so.18.1 library, and the libociei.so library must reside in
the same directory in order to operate in instant client mode.

Note:

To provide Native XA functionality, you must copy the JDBC XA class library.
On UNIX systems, this library, libheteroxa18.so, is located in the
ORACLE_HOME/jdbc/lib directory. On Microsoft Windows, this library,
heteroxa18.dll, is located in the ORACLE_HOME\bin directory.

6.4.3 Benefits of Instant Client
The benefits of Instant Client are the following:

• Installation involves copying a smaller number of files.

• The number of required files and the total disk storage on the Oracle client-side
are significantly reduced.

• There is no loss of functionality or performance for applications deployed with the
Instant Client.

• It is simple for independent software vendors to package applications.

6.4.4 JDBC OCI Instant Client Installation Process
The Instant Client libraries can be installed by choosing the Instant Client option from
Oracle Universal Installer. The Instant Client libraries can also be downloaded from the
Oracle Technology Network Web site. The installation process is as follows:

1. Download and install the Instant Client shared libraries and Oracle JDBC class
libraries to a directory, such as instantclient.

2. Set the library path environment variable to the directory from Step 1. For
example, on UNIX systems, set the LD_LIBRARY_PATH environment variable to
instantclient. On Microsoft Windows, set the PATH environment variable to
locate the instantclient directory.

3. Add the full path names of the JDBC class libraries to the CLASSPATH environment
variable.

After completing these steps you are ready to run the JDBC OCI application.

When you use the Instant Client, the OCI and JDBC shared libraries are accessible
through the library path environment variable for the JDBC OCI applications. In this

Chapter 6
OCI Instant Client

6-3

case, there is no dependency on the ORACLE_HOME and none of the other code and
data files provided in ORACLE_HOME is needed by JDBC OCI, except for the
tnsnames.ora file.

Instant Client can be also installed from Oracle Universal Installer by selecting the
Instant Client option. The Instant Client files should always be installed in an empty
directory. As with the OTN installation, you must set the LD_LIBRARY_PATH environment
variable to the Instant Client directory to use the Instant Client.

If you have done a complete client installation by choosing the Admin option, then the
Instant Client shared libraries are also installed. The location of the Instant Client
shared libraries and JDBC class libraries in a full client installation is:

On Linux or UNIX systems:

• libociei.so library is in $ORACLE_HOME/instantclient

• libclnstsh.so.18.1, libocijdbc18.so, and libnnz18.so are
in $ORACLE_HOME/lib

• The JDBC class libraries are in $ORACLE_HOME/jdbc/lib

On Microsoft Windows:

• oraociei18.dll library is in ORACLE_HOME\instantclient

• oci.dll, ocijdbc18.dll, and orannzsbb18.dll are in ORACLE_HOME\bin

• The JDBC class libraries are in ORACLE_HOME\jdbc\lib

By copying these files to a different directory, setting the library path to locate this
directory, and adding the path names of the JDBC class libraries to the CLASSPATH
environment variable, you can enable running the JDBC OCI application to use the
Instant Client.

Chapter 6
OCI Instant Client

6-4

Note:

• To provide Native XA functionality, you must copy the JDBC XA class
library. On UNIX, this library, libheteroxa18.so, is located in
ORACLE_HOME/jdbc/lib. On Windows, this library, heteroxa18.dll, is
located in ORACLE_HOME\bin.

• All the libraries must be copied from the same ORACLE_HOME and must be
placed in the same directory.

• On hybrid platforms, such as Sparc64, if the JDBC OCI driver needs to
use the Instant Client libraries, then you must copy the libociei.so
library from the ORACLE_HOME/instantclient32 directory. You must copy
all other Sparc64 libraries needed for the JDBC OCI Instant Client from
the ORACLE_HOME/lib32 directory.

• Only one set of Oracle libraries should be specified in the library path
environment variable. That is, if you have multiple directories containing
Instant Client libraries, then only one such directory should be specified
in the library path environment variable.

• If you have an Oracle home on your computer, then you should not have
the ORACLE_HOME/lib and Instant Client directories in the library path
environment variable simultaneously, regardless of the order in which
they appear in the variable. That is, only one of ORACLE_HOME/lib
directory (for non-Instant Client operation) or Instant Client directory (for
Instant Client operation) should be specified in the library path
environment variable.

• Oracle recommends that you download Instant Client from Oracle
Technology Network (OTN)

https://www.oracle.com/technetwork/database/database-
technologies/instant-client/overview/index.html

6.4.5 Usage of Instant Client
Instant Client is a deployment feature and should be used for running production
applications. For development, a full installation is necessary to access demonstration
programs and so on. In general, all JDBC OCI functionality is available to an
application using the Instant Client, except that the Instant Client is for client-side
operation only. Therefore, server-side external procedures cannot use the Instant
Client.

6.4.6 About Patching Instant Client Shared Libraries
The Instant Client is a deployment feature, so the emphasis is on reducing the number
and size of files required to run a JDBC OCI application. Therefore, all files needed to
patch Instant Client shared libraries are not available in an Instant Client deployment.
An ORACLE_HOME based full client installation is needed to patch the Instant Client
shared libraries. The opatch utility will take care of patching the Instant Client shared
libraries.

Chapter 6
OCI Instant Client

6-5

https://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
https://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

Note:

On Microsoft Windows, you cannot patch the shared libraries.

After applying the patch in an ORACLE_HOME environment, copy the files listed in
Table 6-1 to the instant client directory.

Instead of copying individual files, you can generate Instant Client ZIP files for OCI,
OCCI, JDBC, and SQL*Plus. Then, you can copy the ZIP files to the target computer
and unzip them.

The opatch utility stores the patching information of the ORACLE_HOME installation in
libclnstsh.so.18.1. This information can be retrieved by the following command:

genezi -v

Note that if the computer from where Instant Client is deployed does not have the
genezi utility, then it must be copied from the ORACLE_HOME/bin directory on the
computer that has the ORACLE_HOME installation.

Related Topics

• JDBC OCI Instant Client Installation Process

6.4.7 Regeneration of Data Shared Library and ZIP files
The OCI Instant Client Data Shared Library, libociei.so, can be regenerated by
performing the following steps in an Administrator Installation of ORACLE_HOME:

mkdir -p $ORACLE_HOME/rdbms/install/instantclient/light
cd $ORACLE_HOME/rdbms/lib
make -f ins_rdbms.mk ilibociei

A new version of the libociei.so Data Shared Library based on the current files in
the ORACLE_HOME is then placed in the ORACLE_HOME/rdbms/install/instantclient
directory.

Note that the location of the regenerated Data Shared Library, libociei.so, is
different from that of the original Data Shared Library, libociei.so, which is located in
the ORACLE_HOME/instantclient directory. The preceding steps also generate Instant
Client ZIP files for OCI, OCCI, JDBC, and SQL*Plus.

Regeneration of data shared library and ZIP files is not available on Microsoft
Windows platforms.

6.4.8 Database Connection Names for OCI Instant Client
All Oracle Net naming methods that do not require the ORACLE_HOME or TNS_ADMIN
environment variables to locate configuration files, such as tnsnames.ora or
sqlnet.ora, use the Instant Client. In particular, the connection string can be specified
in the following formats:

• A Thin-style connection string of the form:

host:port:service_name

Chapter 6
OCI Instant Client

6-6

For example:

url="jdbc:oracle:oci:@example.com:5521:orcl"

• A SQL connection URL string of the form:

//host:[port][/service_name]

For example:

url="jdbc:oracle:oci:@//example.com:5521/orcl"

• As an Oracle Net keyword-value pair. For example:

url="jdbc:oracle:oci:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
 (HOST=localhost) (PORT=5521))
 (CONNECT_DATA=(SERVICE_NAME=orcl)))"

Naming methods that require TNS_ADMIN to locate configuration files continue to work if
the TNS_ADMIN environment variable is set.

See Also:

Oracle Database Net Services Administrator's Guide for more information
about connection formats

If the TNS_ADMIN environment variable is not set and TNSNAMES entries, such as inst1,
are used, then the ORACLE_HOME environment variable must be set and the
configuration files are expected to be in the $ORACLE_HOME/network/admin directory.

Note:

In this case, the ORACLE_HOME environment variable is used only for locating
Oracle Net configuration files. No other component of Client Code Library
uses the value of the ORACLE_HOME environment variable.

The empty connection string is not supported. However, an alternate way to use the
empty connection string is to set the TWO_TASK environment variable on UNIX systems,
or the LOCAL variable on Microsoft Windows, to either a tnsnames.ora entry or an
Oracle Net keyword-value pair. If TWO_TASK or LOCAL is set to a tnsnames.ora entry,
then the tnsnames.ora file must be loaded by the TNS_ADMIN or ORACLE_HOME setting.

Example

Consider that the listener.ora file on the database server contains the following
information:

LISTENER = (ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=5221)))

SID_LIST_LISTENER = (SID_LIST=
 (SID_DESC=(SID_NAME=rdbms3)
 (GLOBAL_DBNAME=rdbms3.server6.com)
 (ORACLE_HOME=/home/dba/rdbms3/oracle)))

You can connect to this server in one of the following ways:

Chapter 6
OCI Instant Client

6-7

url = "jdbc:oracle:oci:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
 (HOST=server6)(PORT=5221))
 (CONNECT_DATA=(SERVICE_NAME=rdbms3.server6.com)))"

or:

url = "jdbc:oracle:oci:@//server6:5221/rdbms3.server6.com"

Alternatively, you can set the TWO_TASK environment variable to any of the connection
strings and connect to the database server without specifying the connection string
along with the sqlplus command. For example, set the TWO_TASK environment in one
of the following ways:

setenv TWO_TASK "(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=5221))
 (CONNECT_DATA=(SERVICE_NAME=rdbms3.server6.com)))"

or:

setenv TWO_TASK //server6:5221/rdbms3.server6.com

Now, you can connect to the database server using the following URL:

url = "jdbc:oracle:oci:@"

The connection string can also be stored in the tnsnames.ora file. For example,
consider that the tnsnames.ora file contains the following:

conn_str = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=5221))
 (CONNECT_DATA=(SERVICE_NAME=rdbms3.server6.com)))

If this tnsnames.ora file is located in the /home/webuser/instantclient directory,
then you can set the TNS_ADMIN environment variable (or LOCAL on Microsoft Windows)
as follows:

setenv TNS_ADMIN /home/webuser/instantclient

Now, you can connect as follows:

url = "jdbc:oracle:oci:@conn_str"

Note:

The TNS_ADMIN environment variable specifies the directory where the
tnsnames.ora file is located. However, TNS_ADMIN does not specify the full
path of the tnsnames.ora file, instead it specifies the directory.

If this tnsnames.ora file is located in the /network/server6/home/dba/oracle/
network/admin directory in the Oracle home, then instead of using TNS_ADMIN to locate
the tnsnames.ora file, you can set the ORACLE_HOME environment variable as follows:

setenv ORACLE_HOME /network/server6/home/dba/oracle

Now, you can connect with either of the conn_str connection strings, as specified
previously.

If tnsnames.ora can be located by TNS_ADMIN or ORACLE_HOME, then TWO_TASK can be
set to:

Chapter 6
OCI Instant Client

6-8

setenv TWO_TASK conn_str

You can then connect with the following URL:

url = "jdbc:oracle:oci:@"

6.4.9 Environment Variables for OCI Instant Client
The ORACLE_HOME environment variable no longer determines the location of the NLS,
CORE, and error message files. An OCI-only application does not require the
ORACLE_HOME environment variable to be set. However, if the variable is set, then it
does not have an impact on the operation of the OCI driver. OCI driver always obtains
its data from the Data Shared Library. If the Data Shared Library is not available, only
then the ORACLE_HOME environment variable is used and a full client installation is
assumed. Even though the ORACLE_HOME environment variable is not required to be
set, if it is set, then it must be set to a valid operating system path name that identifies
a directory.

Environment variables ORA_NLS10 and ORA_NLSPROFILES33 are ignored while using the
Instant Client.

If the ORA_TZFILE variable is not set, then the Instant Client uses the larger
timezlrg_n.dat file from the Data Shared Library, which is the default setting. If the
smaller timezone_n.dat file is to be used from the Data Shared Library, then set the
ORA_TZFILE environment variable to the name of the file without any absolute or
relative path names. That is:

On UNIX systems:

setenv ORA_TZFILE timezone_n.dat

On Microsoft Windows:

set ORA_TZFILE timezone_n.dat

In the examples above, n is the time zone data file version number.

If the OCI driver is not using the Instant Client because of nonavailability of the Data
Shared Library, then the ORA_TZFILE variable, if set, names a complete path name, as
it does in previous Oracle Database releases.

If TNSNAMES entries are used, then, as mentioned earlier, the TNS_ADMIN directory must
contain the TNSNAMES configuration files, and if TNS_ADMIN is not set, then the
ORACLE_HOME/network/admin directory must contain Oracle Net Services configuration
files.

6.5 About Instant Client Light (English)
The lightweight version of Instant Client is called Instant Client Light (English). Instant
Client Light is the short name. Instant Client Light is a significantly smaller version of
Instant Client. This reduces the disk space requirements of the client installation by
about 63 MB. This is achieved by the lightweight Data Shared Library, libociicus.so
on UNIX systems, which is 4 MB in size and a subset of the data shared library,
libociei.so, which is 67 MB in size.

The lightweight data shared library supports only a few character sets and error
messages that are only in English. Therefore, the name Instant Client Light (English).

Chapter 6
About Instant Client Light (English)

6-9

Instant Client Light is designed for applications that require English-only error
messages and use either US7ASCII, WE8DEC, or one of the Unicode character sets.

This section covers the following topics:

• Data Shared Library for Instant Client Light (English)

• Globalization Settings

• Operation

• Installing Instant Client Light (English)

6.5.1 Data Shared Library for Instant Client Light (English)
Table 6-2 lists the names of the data shared libraries for Instant Client and Instant
Client Light (English) on different platforms. The table also specifies the size of each
data shared library in parentheses following the library file name.

Table 6-2 Data Shared Library for Instant Client and Instant Client Light
(English)

Platform Instant Client Instant Client Light (English)

Solaris libociei.so (67 MB) libociicus.so (4 MB)

Linux libociei.so (67 MB) libociicus.so (4 MB)

Microsoft Windows oraociei18.dll (85 MB) oraociicus18.dll (15 MB)

6.5.2 Globalization Settings
The NLS_LANG setting determines the language, territory, and character set as
language_territory.characterset. In Instant Client Light, language can only be
American, territory can be any that is supported, and characterset can be any one
of the following:

• Single-byte

– US7ASCII

– WE8DEC

– WE8MSWIN1252

– WE8ISO8859P1

• Unicode

– UTF8

– AL16UTF16

– AL32UTF8

Specifying character set or national character set other than those listed as the client
or server character set or setting the language in NLS_LANG on the client will throw one
of the following errors:

• ORA-12734

• ORA-12735

Chapter 6
About Instant Client Light (English)

6-10

• ORA-12736

• ORA-12737

With Instant Client Light, the error messages obtained are only in English. Therefore,
the valid values for the NLS_LANG setting are of the type:

American_territory.characterset

where, territory can be any valid and supported territory and characterset can be
any one the previously listed character sets.

Instant Client Light can operate with the OCI environment handles created in the
OCI_UTF16 mode.

See Also:

Oracle Database Globalization Support Guide for more information about
NLS settings

6.5.3 Operation
To use the Instant Client Light, an application must set the LD_LIBARARY_PATH
environment variable in UNIX systems or the PATH environment variable in Microsoft
Windows to a location containing the client and data shared libraries. OCI applications
by default look for the OCI Data Shared Library, libociei.so in the LD_LIBRARY_PATH
environment variable in UNIX systems or the oraociei18.dll Data Shared Library in
the PATH environment variable in Microsoft Windows, to determine if the application
should use the Instant Client. In case this library is not found, then OCI tries to load the
Instant Client Light Data Shared Library, libociicus.so in UNIX systems or
libociicus18.dll in Microsoft Windows. If this library is found, then the application
uses the Instant Client Light. Otherwise, a non-Instant Client is used.

6.5.4 Installing Instant Client Light (English)
Instant Client Light can be installed in one of the following ways:

• From OTN

You can download the required file from

https://www.oracle.com/technetwork/database/database-technologies/
instant-client/overview/index.html

For Instant Client Light, instead of downloading and expanding the Basic package,
download and unzip the Basic Light package. The directory in which the
lightweight libraries are unzipped should be empty before unzipping the files.

• From Client Admin Install

Instead of copying libociei.so or oraociei18.dll from the ORACLE_HOME/
instantclient directory, copy libociicus.so or oraociic18.dll from the
ORACLE_HOME/instantclient/light directory. That is, the Instant Client directory
on the LD_LIBRARY_PATH environment variable, in UNIX systems, should contain
the Instant Client Light Data Shared Library, libociicus.so, instead of the larger
OCI Instant Client Data Shared Library, libociei.so. In Microsoft Windows, the

Chapter 6
About Instant Client Light (English)

6-11

https://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
https://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

PATH environment variable should contain oraociicus18.dll instead of
oraociei18.dll.

• From Oracle Universal Installer

If the Instant Client option is selected from Oracle Universal Installer, then
libociei.so (or oraociei18.dll on Microsoft Windows) is installed in the base
directory of the installation which is going to be placed on the LD_LIBRARY_PATH
environment variable. This is so that Instant Client Light is not enabled by default.
The Instant Client Light Data Shared Library, libociicus.so (or
oraociicus18.dll on Microsoft Windows), is installed in the light subdirectory of
the base directory. Therefore, to use in the Instant Client Light, the OCI Data
Shared Library, libociei.so (or oraociei18.dll on Windows) must be deleted or
renamed and the Instant Client Light Data Shared Library must be copied from the
light subdirectory to the base directory of the installation.

For example, if Oracle Universal Installer has installed the Instant Client in
my_oraic_18_1 directory on the LD_LIBRARY_PATH environment variable, then you
must perform the following to use the Instant Client Light:

cd my_oraic_18_1
rm libociei.so
mv light/libociicus.so .

Note:

All the Instant Client files should always be copied or installed in an
empty directory. This is to ensure that no incompatible binaries exist in
the installation.

Chapter 6
About Instant Client Light (English)

6-12

7
Server-Side Internal Driver

This chapter covers the following topics:

• Overview of the Server-Side Internal Driver

• Connecting to the Database

• About Session and Transaction Context

• Testing JDBC on the Server

• Loading an Application into the Server

7.1 Overview of the Server-Side Internal Driver
The server-side internal driver is intrinsically tied to Oracle Database and to the
embedded Java Virtual Machine, also known as Oracle Java Virtual Machine (Oracle
JVM). The driver runs as part of the same process as the Database. It also runs within
the default session, the same session in which the Oracle JVM was started. Each
Oracle JVM session has a single implicit native connection to the Database session in
which it exists. This connection is conceptual and is not a Java object. It is an inherent
aspect of the session and cannot be opened or closed from within the JVM.

The server-side internal driver is optimized to run within the database server and
provide direct access to SQL data and PL/SQL subprograms on the local database.
The entire JVM operates in the same address space as the database and the SQL
engine. Access to the SQL engine is a function call. This enhances the performance of
your Java Database Connectivity (JDBC) applications and is much faster than running
a remote Oracle Net call to access the SQL engine.

The server-side internal driver supports the same features, application programming
interfaces (APIs), and Oracle extensions as the client-side drivers. This makes
application partitioning very straightforward. For example, if you have a Java
application that is data-intensive, then you can easily move it into the database server
for better performance, without having to modify the application-specific calls.

7.2 Connecting to the Database
As described in the preceding section, the server-side internal driver runs within a
default session. Therefore, you are already connected. There are two methods to
access the default connection:

• Use the OracleDataSource.getConnection method, with any of the following
forms as the URL string:

– jdbc:oracle:kprb

– jdbc:default:connection

– jdbc:oracle:kprb:

– jdbc:default:connection:

7-1

• Use the Oracle-specific defaultConnection method of the OracleDriver class.

Using defaultConnection is generally recommended.

Note:

You are no longer required to register the OracleDriver class for connecting
with the server-side internal driver.

Connecting with the OracleDriver Class defaultConnection Method

The defaultConnection method of the oracle.jdbc.OracleDriver class is an Oracle
extension and always returns the same connection object. Even if you call this method
multiple times, assigning the resulting connection object to different variable names,
then only a single connection object is reused.

You need not include a connection string in the defaultConnection call. For example:

import java.sql.*;
import oracle.jdbc.*;

class JDBCConnection
{
 public static Connection connect() throws SQLException
 {
 Connection conn = null;
 try {
 // connect with the server-side internal driver

 conn = ora.defaultConnection();
 }

 } catch (SQLException e) {...}
 return conn;
 }
}

Note that there is no conn.close call in the example. When JDBC code is running
inside the target server, the connection is an implicit data channel, not an explicit
connection instance as from a client. It should not be closed.

OracleDriver has a static variable to store a default connection instance. The method
OracleDriver.defaultConnection returns this default connection instance if the
connection exists and is not closed. Otherwise, it creates a new, open instance and
stores it in the static variable and returns it to the caller.

Typically, you should use the OracleDriver.defaultConnection method. This method
is faster and uses less resources. Java stored procedures should be carefully written.
For example, to close statements before the end of each call.

Typically, you should not close the default connection instance because it is a single
instance that can be stored in multiple places, and if you close the instance, each
would become unusable. If it is closed, a later call to the
OracleDriver.defaultConnection method gets a new, open instance.

Chapter 7
Connecting to the Database

7-2

Connecting with the OracleDataSource.getConnection Method

To connect to the internal server connection from code that is running within the target
server, you can use the OracleDataSource.getConnection method with either of the
following URLs:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:kprb");
Connection conn = ods.getConnection();

or:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:default:connection");
Connection conn = ods.getConnection();

Any user name or password you include in the URL is ignored in connecting to the
default server connection.

The OracleDataSource.getConnection method returns a new Java Connection object
every time you call it. The fact that OracleDataSource.getConnection returns a new
connection object every time you call it is significant if you are working with object
maps or type maps. A type map is associated with a specific Connection object and
with any state that is part of the object. If you want to use multiple type maps as part of
your program, then you can call getConnection to create a new Connection object for
each type map.

Note:

Although the OracleDataSource.getConnection method returns a new
object every time you call it, it does not create a new database connection
every time. They all utilize the same implicit native connection and share the
same session state, in particular, the local transaction.

7.3 About Session and Transaction Context
The server-side driver operates within a default session and default transaction
context. The default session is the session in which the JVM was started. In effect, you
are already connected to the database on the server. This is different from the client-
side where there is no default session. You must explicitly connect to the database.

Auto-commit mode is disabled in the server. You must manage transaction COMMIT and
ROLLBACK operations explicitly by using the appropriate methods on the connection
object:

conn.commit();

or:

conn.rollback();

Chapter 7
About Session and Transaction Context

7-3

Note:

As a best practice, it is recommended not to commit or rollback a transaction
inside the server.

7.4 Testing JDBC on the Server
Almost any JDBC program that can run on a client can also run on the server. All the
programs in the samples directory can be run on the server, with only minor
modifications. Usually, these modifications concern only the connection statement.

Consider the following code fragment which obtains a connection to a database:

ods.setUrl(
"jdbc:oracle:oci:@(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias)
 (PORT=5221))
 (CONNECT_DATA=(SERVICE_NAME=orcl)))");
ods.setUser("HR");
ods.setPassword("hr");
Connection conn = ods.getConnection();

We can modify this code fragment for use in the server-side internal driver. In the
server-side internal driver, no user, password, or database information is necessary.
For the connection statement, you use:

ods.setUrl(
"jdbc:oracle:kprb:@");
Connection conn = ods.getConnection();

However, the most convenient way to get a connection is to call the
OracleDriver.defaultConnection method, as follows:

Connection conn = OracleDriver.defaultConnection();

7.5 Loading an Application into the Server
When loading an application into the server, you can load .class files that you have
already compiled on the client or you can load .java source files and have them
automatically compiled on the server.

7.5.1 Using the Loadjava Utility
You can use the loadjava utility to load your files. You can either specify source file
names on the command line or put the files into a Java Archive (JAR) file and specify
the JAR file name on the command line.

The loadjava script, which runs the actual utility, is in the bin directory in your Oracle
home. This directory should already be in your path once Oracle has been installed.

Chapter 7
Testing JDBC on the Server

7-4

Note:

The loadjava utility supports compressed files.

Loading Class Files into the Server

Consider a case where you have the following three class files in your application:
Foo1.class, Foo2.class, and Foo3.class. Each class is written into its own class
schema object in the server.

You can load the class files using the default JDBC Oracle Call Interface (OCI) driver
in the following ways:

• Specifying the individual class file names, as follows:

loadjava -user HR Foo1.class Foo2.class Foo3.class
Password: password

• Specifying the class file names using a wildcard, as follows:

loadjava -user HR Foo*.class
Password: password

• Specifying a JAR file that contains the class files, as follows:

loadjava -user HR Foo.jar
Password: password

You can load the files using the JDBC Thin driver, as follows:

loadjava -thin -user HR@localhost:5221:orcl Foo.jar
Password: password

Note:

Starting from Oracle Database 12c Release 1 (12.1), JDK 6, and JDK 7 are
supported. However, only one of the JVMs will be active at a given time.

Ensure that your classes are not compiled using a newer version of JDK than
the active runtime version on the server.

Loading Source Files into the Server

If you enable the loadjava -resolve option when loading a .java source file, then the
server-side compiler will compile your application as it is loaded, resulting in both a
source schema object for the original source code and one or more class schema
objects for the compiled output.

If you do not specify -resolve, then the source is loaded into a source schema object
without any compilation. In this case, however, the source is implicitly compiled the
first time an attempt is made to use a class defined in the source.

For example, run loadjava as follows to load and compile Foo.java, using the default
JDBC OCI driver:

Chapter 7
Loading an Application into the Server

7-5

loadjava -user HR -resolve Foo.java
Password: password

Or, use the following command to load using the JDBC Thin driver:

loadjava -thin -user HR@localhost:5221:orcl -resolve Foo.java
Password: password

Either of these will result in appropriate class schema objects being created in addition
to the source schema object.

Note:

Oracle generally recommends compiling source on the client, whenever
possible, and loading the .class files instead of the source files into the
server.

See Also:

Oracle Database Java Developer's Guide

7.5.2 Using the JVM Command Line
You can also use the JVM command-line option to load your files. The command-line
interface to Oracle JVM is analogous to using the JDK or JRE shell commands. You
can:

• Use the standard -classpath syntax to indicate where to find the classes to load

• Set the system properties by using the standard -D syntax

The interface is a PL/SQL function that takes a string (VARCHAR2) argument, parses it
as a command-line input and if it is properly formed, runs the indicated Java method in
Oracle JVM. To do this, PL/SQL package DBMS_JAVA provides the following functions:

• runjava

You can use the runjava function in the following way:

FUNCTION runjava(cmdline VARCHAR2) RETURN VARCHAR2;

• runjava_in_current_session

You can use the runjava_in_current_session function in the following way:

FUNCTION runjava_in_current_session(cmdline VARCHAR2) RETURN VARCHAR2;

Chapter 7
Loading an Application into the Server

7-6

Note:

Starting with Oracle Database 11g Release 1, there is a just-in-time (JIT)
compiler for Oracle JVM environment. A JIT compiler for Oracle JVM
enables much faster execution because the JIT compiler uses advanced
techniques as compared to the old Native compiler and compiles dynamically
generated code. Unlike the old Native compiler, the JIT compiler does not
require a C compiler. It is enabled without the support of any plug-ins.

Chapter 7
Loading an Application into the Server

7-7

Part III
Connection and Security

This part consists of chapters that discuss the use of data sources and URLs to
connect to the database. It also includes chapters that discuss the security features
supported by the Oracle Java Database Connectivity (JDBC) Oracle Call Interface
(OCI) and Thin drivers, Secure Sockets Layer (SSL) support in JDBC Thin driver, and
middle-tier authentication through proxy connections.

Part III contains the following chapters:

• Data Sources and URLs

• JDBC Client-Side Security Features

• Proxy Authentication

8
Data Sources and URLs

This chapter discusses connecting applications to databases using Java Database
Connectivity (JDBC) data sources, as well as the URLs that describe databases. This
chapter contains the following sections:

• About Data Sources

• Database URLs and Database Specifiers

8.1 About Data Sources
Data sources are standard, general-use objects for specifying databases or other
resources to use. The JDBC 2.0 extension application programming interface (API)
introduced the concept of data sources. For convenience and portability, data sources
can be bound to Java Naming and Directory Interface (JNDI) entities, so that you can
access databases by logical names.

The data source facility provides a complete replacement for the previous JDBC
DriverManager facility. You can use both facilities in the same application, but it is
recommended that you transition your application to data sources.

This section covers the following topics:

• Overview of Oracle Data Source Support for JNDI

• Features and Properties of Data Sources

• Creating a Data Source Instance and Connecting

• Creating a Data Source Instance_ Registering with JNDI_ and Connecting

• Supported Connection Properties

• About Using Roles for SYS Login

• Configuring Database Remote Login

• Using Bequeath Connection and SYS Logon

• Setting Properties for Oracle Performance Extensions

• Support for Network Data Compression

8.1.1 Overview of Oracle Data Source Support for JNDI
The JNDI standard provides a way for applications to find and access remote services
and resources. These services can be any enterprise services. However, for a JDBC
application, these services would include database connections and services.

JNDI enables an application to use logical names in accessing these services,
removing vendor-specific syntax from application code. JNDI has the functionality to
associate a logical name with a particular source for a desired service.

8-1

All Oracle JDBC data sources are JNDI-referenceable. The developer is not required
to use this functionality, but accessing databases through JNDI logical names makes
the code more portable.

Note:

Using JNDI functionality requires the jndi.jar file to be in the CLASSPATH
environment variable. This file is included with the Java products on the
installation CD. You must add it to the CLASSPATH environment variable
separately.

8.1.2 Features and Properties of Data Sources
By using the data source functionality with JNDI, you do not need to register the
vendor-specific JDBC driver class name and you can use logical names for URLs and
other properties. This ensures that the code for opening database connections is
portable to other environments.

The DataSource Interface and Oracle Implementation

A JDBC data source is an instance of a class that implements the standard
javax.sql.DataSource interface:

public interface DataSource
{
 Connection getConnection() throws SQLException;
 Connection getConnection(String username, String password)
 throws SQLException;
 ...
}

Oracle implements this interface with the OracleDataSource class in the
oracle.jdbc.pool package. The overloaded getConnection method returns a
connection to the database.

To use other values, you can set properties using appropriate setter methods. For
alternative user names and passwords, you can also use the getConnection method
that takes these parameters as input. This would take priority over the property
settings.

Note:

The OracleDataSource class and all subclasses implement the
java.io.Serializable and javax.naming.Referenceable interfaces.

Properties of DataSource

The OracleDataSource class, as with any class that implements the DataSource
interface, provides a set of properties that can be used to specify a database to
connect to. These properties follow the JavaBeans design pattern.

Chapter 8
About Data Sources

8-2

The following tables list the OracleDataSource standard properties and Oracle
extensions respectively.

Note:

Oracle does not implement the standard roleName property.

Table 8-1 Standard Data Source Properties

Name Type Description

databaseName String Name of the particular database on the server.

dataSourceName String Name of the underlying data source class. For
connection pooling, this is an underlying pooled
connection data source class. For distributed
transactions, this is an underlying XA data source class.

description String Description of the data source.

networkProtocol String Network protocol for communicating with the server. For
Oracle, this applies only to the JDBC Oracle Call
Interface (OCI) drivers and defaults to tcp.

password String Password for the connecting user.

portNumber int Number of the port where the server listens for requests

serverName String Name of the database server

user String Name for the login

Note:

For security reasons, there is no getPassword() method.

Table 8-2 Oracle Extended Data Source Properties

Name Type Description

connectionCacheName String Specifies the name of the cache. This cannot
be changed after the cache has been
created.

connectionCacheProperties java.util.
Properties

Specifies properties for implicit connection
cache.

connectionCachingEnabled Boolean Specifies whether implicit connection cache
is in use.

connectionProperties java.util.
Properties

Specifies the connection properties.

driverType String Specifies Oracle JDBC driver type. It can be
one of oci, thin, or kprb.

Chapter 8
About Data Sources

8-3

Table 8-2 (Cont.) Oracle Extended Data Source Properties

Name Type Description

fastConnectionFailoverEnab
led

Boolean Specifies whether Fast Connection Failover
is in use.

implicitCachingEnabled Boolean Specifies whether the implicit statement
connection cache is enabled.

loginTimeout int Specifies the maximum time in seconds that
this data source will wait while attempting to
connect to a database.

logWriter java.io.Pr
intWriter

Specifies the log writer for this data source.

maxStatements int Specifies the maximum number of
statements in the application cache.

serviceName String Specifies the database service name for this
data source.

tnsEntry String Specifies the TNS entry name. The TNS
entry name corresponds to the TNS entry
specified in the tnsnames.ora configuration
file.

Enable this OracleXADataSource property
when using the Native XA feature with the
OCI driver, to access Oracle pre-8.1.6
databases and later. If the tnsEntry
property is not set when using the Native XA
feature, then a SQLException with error
code ORA-17207 is thrown

url String Specifies the URL of the database
connection string. Provided as a
convenience, it can help you migrate from an
older Oracle Database. You can use this
property in place of the Oracle tnsEntry
and driverType properties and the
standard portNumber, networkProtocol,
serverName, and databaseName
properties.

nativeXA Boolean Allows an OracleXADataSource using the
Native XA feature with the OCI driver, to
access Oracle pre-8.1.6 databases and later.
If the nativeXA property is enabled, be sure
to set the tnsEntry property as well. This
property is only for OracleXADatasource.

This DataSource property defaults to
false.

ONSConfiguration String Specifies the ONS configuration string that is
used to remotely subscribe to FAN/ONS
events.

Chapter 8
About Data Sources

8-4

Note:

• This table omits properties that supported the deprecated connection
cache based on OracleConnectionCache.

• Because Native XA performs better than Java XA, use Native XA
whenever possible.

Use the setConnectionProperties method to set the properties of the connection and
the setConnectionCacheProperties method to set the properties of the connection
cache.

If you are using the server-side internal driver, that is, the driverType property is set to
kprb, then any other property settings are ignored.

If you are using the JDBC Thin or OCI driver, then note the following:

• A URL setting can include settings for user and password, as in the following
example, in which case this takes precedence over individual user and password
property settings:

jdbc:oracle:thin:HR/hr@localhost:5221:orcl

• Settings for user and password are required, either directly through the URL
setting or through the getConnection call. The user and password settings in a
getConnection call take precedence over any property settings.

• If the url property is set, then any tnsEntry, driverType, portNumber,
networkProtocol, serverName, and databaseName property settings are ignored.

• If the tnsEntry property is set, which presumes the url property is not set, then
any databaseName, serverName, portNumber, and networkProtocol settings are
ignored.

• If you are using an OCI driver, which presumes the driverType property is set to
oci, and the networkProtocol is set to ipc, then any other property settings are
ignored.

Also, note that getConnectionCacheName() will return the name of the cache only if the
ConnectionCacheName property of the data source is set after caching is enabled on
the data source.

8.1.3 Creating a Data Source Instance and Connecting
This section shows an example of the most basic use of a data source to connect to a
database, without using JNDI functionality. Note that this requires vendor-specific,
hard-coded property settings.

Create an OracleDataSource instance, initialize its connection properties as
appropriate, and get a connection instance, as in the following example:

OracleDataSource ods = new OracleDataSource();
ods.setDriverType("oci");
ods.setServerName("localhost");
ods.setNetworkProtocol("tcp");
ods.setDatabaseName(<database_name>);
ods.setPortNumber(5221);

Chapter 8
About Data Sources

8-5

ods.setUser("HR");
ods.setPassword("hr");
Connection conn = ods.getConnection();

Or, optionally, override the user name and password, as follows:

Connection conn = ods.getConnection("OE", "oe");

8.1.4 Creating a Data Source Instance, Registering with JNDI, and
Connecting

This section exhibits JNDI functionality in using data sources to connect to a database.
Vendor-specific, hard-coded property settings are required only in the portion of code
that binds a data source instance to a JNDI logical name. From that point onward, you
can create portable code by using the logical name in creating data sources from
which you will get your connection instances.

Note:

Creating and registering data sources is typically handled by a JNDI
administrator, not in a JDBC application.

Initialize Data Source Properties

Create an OracleDataSource instance, and then initialize its properties as appropriate,
as in the following example:

OracleDataSource ods = new OracleDataSource();
ods.setDriverType("oci");
ods.setServerName("localhost");
ods.setNetworkProtocol("tcp");
ods.setDatabaseName("816");
ods.setPortNumber(5221);
ods.setUser("HR");
ods.setPassword("hr");

Register the Data Source

Once you have initialized the connection properties of the OracleDataSource instance
ods, as shown in the preceding example, you can register this data source instance
with JNDI, as in the following example:

Context ctx = new InitialContext();
ctx.bind("jdbc/sampledb", ods);

Calling the JNDI InitialContext() constructor creates a Java object that references
the initial JNDI naming context. System properties, which are not shown, instruct JNDI
which service provider to use.

The ctx.bind call binds the OracleDataSource instance to a logical JNDI name. This
means that anytime after the ctx.bind call, you can use the logical name jdbc/
sampledb in opening a connection to the database described by the properties of the
OracleDataSource instance ods. The logical name jdbc/sampledb is logically bound to
this database.

Chapter 8
About Data Sources

8-6

The JNDI namespace has a hierarchy similar to that of a file system. In this example,
the JNDI name specifies the subcontext jdbc under the root naming context and
specifies the logical name sampledb within the jdbc subcontext.

The Context interface and InitialContext class are in the standard javax.naming
package.

Note:

The JDBC 2.0 Specification requires that all JDBC data sources be
registered in the jdbc naming subcontext of a JNDI namespace or in a child
subcontext of the jdbc subcontext.

Open a Connection

To perform a lookup and open a connection to the database logically bound to the
JNDI name, use the logical JNDI name. Doing this requires casting the lookup result,
which is otherwise a Java Object, to OracleDataSource and then using its
getConnection method to open the connection.

Here is an example:

OracleDataSource odsconn = (OracleDataSource)ctx.lookup("jdbc/sampledb");
Connection conn = odsconn.getConnection();

8.1.5 Supported Connection Properties
For a detailed list of connection properties that Oracle JDBC drivers support, see the
Oracle Database JDBC Java API Reference.

8.1.6 About Using Roles for SYS Login
To specify the role for the SYS login, use the internal_logon connection property. To
log on as SYS, set the internal_logon connection property to SYSDBA or SYSOPER.

Note:

The ability to specify a role is supported only for the sys user name.

For a bequeath connection, we can get a connection as SYS by setting the
internal_logon property. For a remote connection, we need additional password file
setting procedures.

8.1.7 Configuring Database Remote Login
Before the JDBC Thin driver can connect to the database as SYSDBA, you must
configure the user, because Oracle Database security system requires a password file
for remote connections as an administrator. Perform the following:

Chapter 8
About Data Sources

8-7

1. Set a password file on the server-side or on the remote database, using the
orapwd password utility. You can add a password file for user SYS as follows:

• In UNIX

orapwd file=$ORACLE_HOME/dbs/orapwORACLE_SID entries=200
Enter password: password

• In Microsoft Windows

orapwd file=%ORACLE_HOME%\database\PWDORACLE_SID.ora entries=200
Enter password: password

In this case, file is the name of the password file, password is the password for
user SYS. It can be altered using the ALTER USER statement in SQL Plus. You
should set entries to a value higher than the number of entries you expect.

The syntax for the password file name is different on Microsoft Windows and
UNIX.

See Also:

Oracle Database Administrator’s Guide

2. Enable remote login as SYSDBA. This step grants SYSDBA and SYSOPER system
privileges to individual users and lets them connect as themselves.

Stop the database, and add the following line to initservice_name.ora, in UNIX,
or init.ora, in Microsoft Windows:

remote_login_passwordfile=exclusive

The initservice_name.ora file is located at ORACLE_HOME/dbs/ and also at
ORACLE_HOME/admin/db_name/pfile/. Ensure that you keep the two files
synchronized.

The init.ora file is located at %ORACLE_BASE%\ADMIN\db_name\pfile\.

3. Change the password for the SYS user. This is an optional step.

PASSWORD sys
 Changing password for sys
New password: password
Retype new password: password

4. Verify whether SYS has the SYSDBA privilege.

SQL> select * from v$pwfile_users;
USERNAME SYSDB SYSOP
---------------------- --------- ---------
SYS TRUE TRUE

5. Restart the remote database.

Example 8-1 Using SYS Login To Make a Remote Connection

//This example works regardless of language settings of the database.
 /** case of remote connection using sys **/
import java.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.*;
// create an OracleDataSource

Chapter 8
About Data Sources

8-8

OracleDataSource ods = new OracleDataSource();
// set connection properties
java.util.Properties prop = new java.util.Properties();
prop.put("user", "sys");
prop.put("password", "sys");
prop.put("internal_logon", "sysoper");
ods.setConnectionProperties(prop);
// set the url
// the url can use oci driver as well as:
// url = "jdbc:oracle:oci8:@remotehost"; the remotehost is a remote database
String url = "jdbc:oracle:thin:@//localhost:5221/orcl";
ods.setURL(url);
// get the connection
Connection conn = ods.getConnection();
...

8.1.8 Using Bequeath Connection and SYS Logon
The following example illustrates how to use the internal_logon and SYSDBA
arguments to specify the SYS login. This example works regardless of the database's
national-language settings of the database.

/** Example of bequeath connection **/
import java.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.*;

// create an OracleDataSource instance
OracleDataSource ods = new OracleDataSource();

// set neccessary properties
java.util.Properties prop = new java.util.Properties();
prop.put("user", "sys");
prop.put("password", "sys");
prop.put("internal_logon", "sysdba");
ods.setConnectionProperties(prop);

// the url for bequeath connection
String url = "jdbc:oracle:oci8:@";
ods.setURL(url);

// retrieve the connection
Connection conn = ods.getConnection();
...

8.1.9 Setting Properties for Oracle Performance Extensions
Some of the connection properties are for use with Oracle performance extensions.
Setting these properties is equivalent to using corresponding methods on the
OracleConnection object, as follows:

• Setting the defaultRowPrefetch property is equivalent to calling
setDefaultRowPrefetch.

• Setting the remarksReporting property is equivalent to calling
setRemarksReporting.

Chapter 8
About Data Sources

8-9

See Also:

"About Reporting DatabaseMetaData TABLE_REMARKS"

Example

The following example shows how to use the put method of the
java.util.Properties class, in this case, to set Oracle performance extension
parameters.

//import packages and register the driver
import java.sql.*;
import java.math.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.OracleDataSource;

//specify the properties object
java.util.Properties info = new java.util.Properties();
info.put ("user", "HR");
info.put ("password", "hr");
info.put ("defaultRowPrefetch","20");
info.put ("defaultBatchValue", "5");

//specify the datasource object
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:thin:@//localhost:5221/orcl");
ods.setUser("HR");
ods.setPassword("hr");
ods.setConnectionProperties(info);
...

8.1.10 Support for Network Data Compression

Starting from Oracle Database 12c Release 2 (12.2.0.1), the JDBC Thin driver
supports network data compression. Network data compression reduces the size of
the session data unit (SDU) transmitted over a data connection and reduces the time
required to transmit a SQL query and the result across the network. The benefits are
more significant in case of Wireless Area Network (WAN). For enabling network data
compression, you must set the connection properties in the following way:

Note:

Network compression does not work for streamed data.

...
OracleDataSource ds = new OracleDataSource();
Properties prop = new Properties();
prop.setProperty("user","user1");
prop.setProperty("password",<password>);

// Enabling Network Compression

Chapter 8
About Data Sources

8-10

prop.setProperty("oracle.net.networkCompression","on");

//Optional configuration for setting the client compression threshold.
prop.setProperty("oracle.net.networkCompressionThreshold","1024");

ds.setConnectionProperties(prop);
ds.setURL(url);
Connection conn = ds.getConnection();
...

8.2 Database URLs and Database Specifiers
Database URLs are strings. The complete URL syntax is:

jdbc:oracle:driver_type:[username/password]@database_specifier

Note:

• The brackets indicate that the username/password pair is optional.

• kprb, the internal server-side driver, uses an implicit connection.
Database URLs for the server-side driver end after the driver_type.

The first part of the URL specifies which JDBC driver is to be used. The supported
driver_type values are thin, oci, and kprb.

The remainder of the URL contains an optional user name and password separated by
a slash, an @, and the database specifier, which uniquely identifies the database to
which the application is connected. Some database specifiers are valid only for the
JDBC Thin driver, some only for the JDBC OCI driver, and some for both.

8.2.1 Support for Internet Protocol Version 6
This release of Oracle JDBC drivers supports Internet Protocol Version 6 (IPv6)
addresses in the JDBC URL and machine names that resolve to IPv6 addresses. IPv6
is a new Network layer protocol designed by the Internet Engineering Task Force
(IETF) to replace the current version of Internet Protocol, Internet Protocol Version 4
(IPv4). The primary benefit of IPv6 is a large address space, derived from the use of
128-bit addresses. IPv6 also improves upon IPv4 in areas such as routing, network
auto configuration, security, quality of service, and so on.

Chapter 8
Database URLs and Database Specifiers

8-11

Note:

• An IPv6 Client can support only IPv6 Servers or servers with dual
protocol support, that is, support for both IPv6 and IPv4 protocols.
Conversely, an IPv6 Server can support only IPv6 clients or dual
protocol clients.

• IPv6 is supported only with single instance Database servers and not
with Oracle RAC.

If you want to use a literal IPv6 address in a URL, then you should enclose the literal
address enclosed in a left bracket ([) and a right bracket (]). For example:
[2001:0db8:7654:3210:FEDC:BA98:7654:3210]. So, a JDBC URL, using an IPv6
address will look like the following:

 jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
 (HOST=[2001:0db8:7654:3210:FEDC:BA98:7654:3210])(PORT=5521))
 (CONNECT_DATA=(SERVICE_NAME=sales.example.com))

Note:

All the new System classes that are required for IPv6 support are loaded
when Java is enabled during database initialization. So, if your application
does not have any IPv6 addressing, then you do not need to change your
code to use IPv6 functionality. However, if your application has either IPv6
only or both IPv6 and IPv4 addressing, then you should set the
java.net.preferIPv6Addresses system property in the command line. This
enables the Oracle JVM to load appropriate libraries. These libraries are
loaded once and cannot be reloaded without restarting the Java process.

8.2.2 Support for HTTPS Proxy Configuration

Oracle Database Release 18c JDBC drivers support HTTPS Proxy Configuration.
HTTPS Proxy enables tunnelling secure connections over forward HTTP proxy using
the HTTP CONNECT method. This helps in accessing the public cloud database service
as it eliminates the requirement to open an outbound port on a client side firewall. This
parameter is applicable only to the connect descriptors where PROTOCOL=TCPS. This is
similar to the web browser setting for intranet users who want to connect to internet
hosts.

For configuring HTTPS Proxy, add details to the ADDRESS part of the Connection String
as shown in the following code snippet:

(DESCRIPTION=

 (ADDRESS=(HTTPS_PROXY=sales-proxy)(HTTPS_PROXY_PORT=8080)(PROTOCOL=TCPS)
(HOST=sales2-svr)(PORT=443))

 (CONNECT_DATA=(SERVICE_NAME=sales.us.example.com)))

Chapter 8
Database URLs and Database Specifiers

8-12

8.2.3 Database Specifiers
Table 8-3, shows the possible database specifiers, listing which JDBC drivers support
each specifier.

Note:

• Starting Oracle Database 10g, Oracle Service IDs are not supported.

• Starting Oracle Database 10g, Oracle no longer supports Oracle Names
as a naming method.

Table 8-3 Supported Database Specifiers

Specifier Supported
Drivers

Example

Oracle Net
connection
descriptor

Thin, OCI Thin, using an address list:

url="jdbc:oracle:thin:@(DESCRIPTION=
 (LOAD_BALANCE=on)
(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=5221))
 (ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=5221)))
 (CONNECT_DATA=(SERVICE_NAME=orcl)))"

OCI, using a cluster:

"jdbc:oracle:oci:@(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias)
 (PORT=5221))
 (CONNECT_DATA=(SERVICE_NAME=orcl)))"

Thin-style service
name

Thin Refer to "Thin-style Service Name Syntax" for details.

"jdbc:oracle:thin:HR/hr@//localhost:5221/orcl"

LDAP syntax Thin Refer to LDAP Syntax for details.

"jdbc:oracle:thin:@ldap://ldap.example.com:7777/
sales,cn=OracleContext,dc=com"

Bequeath
connection

OCI Empty. That is, nothing after @

"jdbc:oracle:oci:HR/hr/@"

TNSNames alias Thin, OCI Refer to "TNSNames Alias Syntax" for details.

OracleDataSource ods = new OracleDataSource();
ods.setTNSEntryName("MyTNSAlias");

8.2.4 Thin-style Service Name Syntax
Thin-style service names are supported only by the JDBC Thin driver. The syntax is:

Chapter 8
Database URLs and Database Specifiers

8-13

@//host_name:port_number/service_name

For example:

jdbc:oracle:thin:HR/hr@//localhost:5221/orcl

Note:

The JDBC Thin driver supports only the TCP/IP protocol.

8.2.5 Support for Delay in Connection Retries
Starting from Oracle Database 12c Release 1 (12.1.0.2), there is a new connection
attribute RETRY_DELAY, which specifies the delay between connection retries in
seconds. The following code snippet shows how to use this attribute:

(DESCRIPTION_LIST=
 (DESCRIPTION=
 (CONNECT_TIMEOUT=10)(RETRY_COUNT=3)(RETRY_DELAY=3)
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=myhost1)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=myhost2)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=example1.com)))
 (DESCRIPTION=
 (CONNECT_TIMEOUT=60)(RETRY_COUNT=1)(RETRY_DELAY=5)
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=myhost3)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=myhost4)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=example2.com))))

8.2.6 TNSNames Alias Syntax
You can find the available TNSNAMES entries listed in the tnsnames.ora file on the client
computer from which you are connecting. On Windows, this file is located in the
ORACLE_HOME\NETWORK\ADMIN directory. On UNIX systems, you can find it in the
ORACLE_HOME directory or the directory indicated in your TNS_ADMIN environment
variable.

For example, if you want to connect to the database on host myhost as user HR with
password hr that has a TNSNAMES entry of MyHostString, then write the following:

OracleDataSource ods = new OracleDataSource();
ods.setTNSEntryName("MyTNSAlias");
ods.setUser("HR");
ods.setPassword("hr");
ods.setDriverType("oci");
Connection conn = ods.getConnection();

The oracle.net.tns_admin system property must be set to the location of the
tnsnames.ora file so that the JDBC Thin driver can locate the tnsnames.ora file. For
example:

System.setProperty("oracle.net.tns_admin", "c:\\Temp");
String url = "jdbc:oracle:thin:@tns_entry";

Chapter 8
Database URLs and Database Specifiers

8-14

Note:

When using TNSNames with the JDBC Thin driver, you must set the
oracle.net.tns_admin property to the directory that contains your
tnsnames.ora file.

java -Doracle.net.tns_admin=$ORACLE_HOME/network/admin

8.2.7 LDAP Syntax
An example of database specifier using the Lightweight Directory Access Protocol
(LDAP) syntax is as follows:

"jdbc:oracle:thin:@ldap://ldap.example.com:7777/sales,cn=OracleContext,dc=com"

When using SSL, change this to:

"jdbc:oracle:thin:@ldaps://ldap.example.com:7777/sales,cn=OracleContext,dc=com"

Note:

The JDBC Thin driver can use LDAP over SSL to communicate with Oracle
Internet Directory if you substitute ldaps: for ldap: in the database specifier.
The LDAP server must be configured to use SSL. If it is not, then the
connection attempt will hang.

The JDBC Thin driver supports failover of a list of LDAP servers during the service
name resolution process, without the need for a hardware load balancer. Also, client-
side load balancing is supported for connecting to LDAP servers. A list of space
separated LDAP URLs syntax is used to support failover and load balancing.

When a list of LDAP URLs is specified, both failover and load balancing are enabled
by default. The oracle.net.ldap_loadbalance connection property can be used to
disable load balancing, and the oracle.net.ldap_failover connection property can
be used to disable failover.

An example, which uses failover, but with client-side load balancing disabled, is as
follows:

Properties prop = new Properties();
String url = "jdbc:oracle:thin:@ldap://ldap1.example.com:3500/
cn=salesdept,cn=OracleContext,dc=com/salesdb " +
"ldap://ldap2.example.com:3500/cn=salesdept,cn=OracleContext,dc=com/salesdb " +
"ldap://ldap3.example.com:3500/cn=salesdept,cn=OracleContext,dc=com/salesdb";

prop.put("oracle.net.ldap_loadbalance", "OFF");
OracleDataSource ods = new OracleDataSource();
ods.setURL(url);
ods.setConnectionProperties(prop);

The JDBC Thin driver supports LDAP nonanonymous bind. A set of JNDI environment
properties, which contains authentication information, can be specified for a data

Chapter 8
Database URLs and Database Specifiers

8-15

source. If an LDAP server is configured as not to allow anonymous bind, then
authentication information must be provided to connect to the LDAP server. The
following example shows a simple clear-text password authentication:

String url = "jdbc:oracle:thin:@ldap://ldap.example.com:7777/
sales,cn=salesdept,cn=OracleContext,dc=com";

Properties prop = new Properties();
prop.put("java.naming.security.authentication", "simple");
prop.put("java.naming.security.principal","cn=salesdept,cn=OracleContext,dc=com");
prop.put("java.naming.security.credentials", "mysecret");

OracleDataSource ods = new OracleDataSource();
ods.setURL(url);
ods.setConnectionProperties(prop);

Since JDBC passes down the three properties to JNDI, the authentication mechanism
chosen by client is consistent with how these properties are interpreted by JNDI. For
example, if the client specifies authentication information without explicitly specifying
the java.naming.security.authentication property, then the default authentication
mechanism is "simple".

Chapter 8
Database URLs and Database Specifiers

8-16

9
JDBC Client-Side Security Features

This chapter discusses support in the Oracle Java Database Connectivity (JDBC)
Oracle Call Interface (OCI) and JDBC Thin drivers for login authentication, data
encryption, and data integrity, particularly, with respect to features of the Oracle
Advanced Security option.

Note:

This discussion is not relevant to the server-side internal driver because all
communication through server-side internal driver is completely internal to
the server.

Oracle Advanced Security, previously known as the Advanced Networking Option
(ANO) or Advanced Security Option (ASO), provides industry standards-based data
encryption, data integrity, third-party authentication, single sign-on, and access
authorization. Starting from Oracle Database 11g Release 1, both the JDBC OCI and
JDBC Thin drivers support all the Oracle Advanced Security features.

Note:

If you want to use the security policy file for JDBC ojdbc.policy, then you
can download the file from the following link:

http://www.oracle.com/technetwork/index.html

The ojdbc.policy file contains the granted permissions that you need to run
your application in control environment of the Java Security Manager. You
can either use this file itself as your Java policy file, or get contents from this
file and add the content in your Java policy file. This file contains permissions
like:

• A few mandatory permissions that are always required, for example,
permission java.util.PropertyPermission "user.name", "read";

• A few driver-specific permissions, for example, JDBC OCI driver needs
permission java.lang.RuntimePermission "loadLibrary.ocijdbc12";

• A few feature-based permissions, for example, permissions related to
XA, XDB, FCF and so on

You can set the system properties mentioned in the file or direct values for
permissions as per your requirement.

This chapter contains the following sections:

• Support for Oracle Advanced Security

9-1

http://www.oracle.com/technetwork/index.html

• Support for Login Authentication

• Support for Strong Authentication

• Support for Data Encryption and Integrity

• Support for SSL

• Support for Kerberos

• Support for RADIUS

• About Secure External Password Store

9.1 Support for Oracle Advanced Security
This section describes the following concepts:

• Overview of Oracle Advanced Security

• JDBC OCI Driver Support for Oracle Advanced Security

• JDBC Thin Driver Support for Oracle Advanced Security

9.1.1 Overview of Oracle Advanced Security
Oracle Advanced Security provides the following security features:

• Data Encryption

Sensitive information communicated over enterprise networks and the Internet can
be protected by using encryption algorithms, which transform information into a
form that can be deciphered only with a decryption key. Some of the supported
encryption algorithms are RC4, DES, 3DES, and AES.

To ensure data integrity during transmission, Oracle Advanced Security generates
a cryptographically secure message digest. Starting from Oracle Database 12c
Release 1 (12.1), the SHA-2 list of hashing algorithms are also supported and
Oracle Advanced Security uses the following hashing algorithms to generate the
secure message digest and includes it with each message sent across a network.

This protects the communicated data from attacks, such as data modification,
deleted packets, and replay attacks.

The following code snippet shows how to calculate the checksum using any of the
algorithms mentioned previously:

prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES,
"(SHA1)");
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL,
"REQUIRED");

• Strong Authentication

To ensure network security in distributed environments, it is necessary to
authenticate the user and check his credentials. Password authentication is the
most common means of authentication. Oracle Database enables strong
authentication with Oracle authentication adapters, which support various third-
party authentication services, including SSL with digital certificates. Oracle
Database supports the following industry-standard authentication methods:

– Kerberos

Chapter 9
Support for Oracle Advanced Security

9-2

– Remote Authentication Dial-In User Service (RADIUS)

– Secure Sockets Layer (SSL)

See Also:

Oracle Database Security Guide

9.1.2 JDBC OCI Driver Support for Oracle Advanced Security
If you are using the JDBC OCI driver, which presumes that you are running from a
computer with an Oracle client installation, then support for Oracle Advanced Security
and incorporated third-party features is fairly similar to the support provided by in any
Oracle client situation. Your use of Advanced Security features is determined by
related settings in the sqlnet.ora file on the client computer.

Note:

Starting from Oracle Database 12c Release 1 (12.1), Oracle recommends
you to use the configuration parameters present in the new XML
configuration file oraaccess.xml instead of the OCI-specific configuration
parameters present in the sqlnet.ora file. However, the configuration
parameters present in the sqlnet.ora file are still supported.

Starting from Oracle Database 11g Release 1, the JDBC OCI driver attempts to use
external authentication if you try connecting to a database without providing a
password. The following are some examples using the JDBC OCI driver to connect to
a database without providing a password:

SSL Authentication

The following code snippet shows how to use SSL authentication to connect to the
database:

Example 9-1 Using SSL Authentication to Connect to the Database

import java.sql.*;
import java.util.Properties;

public class test
{
 public static void main(String [] args) throws Exception
 {
 String url = "jdbc:oracle:oci:@"
 +"(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=localhost)(PORT=5221))"
 +"(CONNECT_DATA=(SERVICE_NAME=orcl)))";
 Driver driver = new oracle.jdbc.OracleDriver();
 Properties props = new Properties();
 Connection conn = driver.connect(url, props);
 conn.close();
 }
}

Chapter 9
Support for Oracle Advanced Security

9-3

Using a Data Source

The following code snippet shows how to use a data source to connect to the
database:

Example 9-2 Using a Data Source to Connect to the Database

import java.sql.*;
import javax.sql.*;
import java.util.Properties;
import oracle.jdbc.pool.*;

public class testpool {
 public static void main(String args) throws Exception
 { String url = "jdbc:oracle:oci:@" +"(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)
(HOST=localhost)(PORT=5221))"
 +"(CONNECT_DATA=(SERVICE_NAME=orcl)))";
 OracleConnectionPoolDataSource ocpds = new OracleConnectionPoolDataSource();
 ocpds.setURL(url);
 PooledConnection pc = ocpds.getPooledConnection();
 Connection conn = pc.getConnection();
 }
 }

Note:

The key exception to the preceding, with respect to Java, is that the Secure
Sockets Layer (SSL) protocol is supported by the Oracle JDBC OCI drivers
only if you use native threads in your application. This requires special
attention, because green threads are generally the default.

9.1.3 JDBC Thin Driver Support for Oracle Advanced Security
The JDBC Thin driver cannot assume the existence of an Oracle client installation or
the presence of the sqlnet.ora file. Therefore, it uses a Java approach to support
Oracle Advanced Security. Java classes that implement Oracle Advanced Security are
included in the ojdbc6.jar and ojdbc7.jar files. Security parameters for encryption
and integrity, usually set in the sqlnet.ora file, are set using a Java Properties object
or through system properties.

9.2 Support for Login Authentication
Basic login authentication through JDBC consists of user names and passwords, as
with any other means of logging in to an Oracle server. Specify the user name and
password through a Java properties object or directly through the getConnection
method call. This applies regardless of which client-side Oracle JDBC driver you are
using, but is irrelevant if you are using the server-side internal driver, which uses a
special direct connection and does not require a user name or password.

Starting with Oracle Database 12c Release 1 (12.1.0.2), the Oracle JDBC Thin driver
supports the O7L_MR client ability when you are running your application with a JDK
such as JDK 8, which supports the PBKDF2-SHA2 algorithm. If you are running an
application with JDK 7, then you must add a third-party security provider that supports

Chapter 9
Support for Login Authentication

9-4

the PBKDF2-SHA2 algorithm, otherwise the driver will not support the new 12a password
verifier that requires the O7L_MR client ability.

If you are using Oracle Database 12c Release 1 (12.1.0.2) with the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter set to 12a, then keep the following
points in mind:

• You must also use the 12.1.0.2 Oracle JDBC Thin driver and JDK 8 or JDK 7 with
a third-party security provider that supports the PBKDF2-SHA2 algorithm

• If you use an earlier version of Oracle JDBC Thin driver, then you will get the
following error:

ORA-28040: No matching authentication protocol

• If you use the 12.1.0.2 Oracle JDBC Thin driver with JDK 7, then also you will get
the same error, if you do not add a third-party security provider that supports the
PBKDF2-SHA2 algorithm.

9.3 Support for Strong Authentication
Oracle Advanced Security enables Oracle Database users to authenticate externally.
External authentication can be with RADIUS, Kerberos, Certificate-Based
Authentication, Token Cards, and Smart Cards. This is called strong authentication.
Oracle JDBC drivers provide support for the following strong authentication methods:

• Kerberos

• RADIUS

• SSL (certificate-based authentication)

See Also:

Oracle Database Net Services Reference

9.4 Support for Data Encryption and Integrity
This section describes the following concepts:

• Overview of JDBC Support for Data Encryption and Integrity

• JDBC OCI Driver Support for Encryption and Integrity

• JDBC Thin Driver Support for Encryption and Integrity

• Setting Encryption and Integrity Parameters in Java

9.4.1 Overview of JDBC Support for Data Encryption and Integrity
You can use Oracle Database and Oracle Advanced Security data encryption and
integrity features in your Java database applications, depending on related settings in
the server. When using the JDBC OCI driver, set parameters as you would in any
Oracle client situation. When using the Thin driver, set parameters through a Java
properties object.

Chapter 9
Support for Strong Authentication

9-5

Encryption is enabled or disabled based on a combination of the client-side
encryption-level setting and the server-side encryption-level setting. Similarly, integrity
is enabled or disabled based on a combination of the client-side integrity-level setting
and the server-side integrity-level setting.

Encryption and integrity support the same setting levels, REJECTED, ACCEPTED,
REQUESTED, and REQUIRED. Table 9-1 shows how these possible settings on the client-
side and server-side combine to either enable or disable the feature. By default,
remote OS authentication (through TCP) is disabled in the database for security
reasons.

Table 9-1 Client/Server Negotiations for Encryption or Integrity

Client/Server
Settings Matrix

Client Rejected Client
Accepted
(default)

Client
Requested

Client
Required

Server Rejected OFF OFF OFF connection fails

Server Accepted
(default)

OFF OFF ON ON

Server Requested OFF ON ON ON

Server Required connection fails ON ON ON

Table 9-1 shows, for example, that if encryption is requested by the client, but rejected
by the server, it is disabled. The same is true for integrity. As another example, if
encryption is accepted by the client and requested by the server, it is enabled. The
same is also true for integrity.

See Also:

• Oracle Database Advanced Security Guide for more information about
Transparent Data Encryption (TDE)

• Oracle Database Security Guide for more information about data
encryption and integrity features, except TDE

Note:

The term checksum still appears in integrity parameter names, but is no
longer used otherwise. For all intents and purposes, checksum and integrity
are synonymous.

9.4.2 JDBC OCI Driver Support for Encryption and Integrity
If you are using the JDBC OCI driver, which presumes an Oracle-client setting with an
Oracle client installation, then you can enable or disable data encryption or integrity
and set related parameters as you would in any Oracle client situation, through
settings in the sqlnet.ora file on the client.

Chapter 9
Support for Data Encryption and Integrity

9-6

Note:

Starting from Oracle Database 12c Release 1 (12.1), Oracle recommends
you to use the configuration parameters present in the new XML
configuration file oraaccess.xml instead of the OCI-specific configuration
parameters present in the sqlnet.ora file. However, the configuration
parameters present in the sqlnet.ora file are still supported.

To summarize, the client parameters are shown in Table 9-2:

Table 9-2 OCI Driver Client Parameters for Encryption and Integrity

Parameter Description Parameter Name Possible Settings

Client encryption level SQLNET.ENCRYPTION_CLIENT REJECTED ACCEPTED
REQUESTED
REQUIRED

Client encryption selected list SQLNET.ENCRYPTION_TYPES_CLIENT RC4_40, RC4_56, DES,
DES40, AES128,
AES192, AES256,
3DES112, 3DES168

(see Note)

Client integrity level SQLNET.CRYPTO_CHECKSUM_CLIENT REJECTED ACCEPTED
REQUESTED
REQUIRED

Client integrity selected list SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT MD5, SHA-1

Note:

For the Oracle Advanced Security domestic edition only, settings of RC4_128
and RC4_256 are also possible.

9.4.3 JDBC Thin Driver Support for Encryption and Integrity
The JDBC Thin driver support for data encryption and integrity parameter settings
parallels the JDBC OCI driver support discussed in the preceding section. You can set
the corresponding parameters through a Java properties object that you can use while
opening a database connection.

The default value for the encryption and integrity level is ACCEPTED for both the server
side and the client side. This enables you to achieve the desired security level for a
connection pair by configuring only one side of a connection, either the server side or
the client side. This increases the efficiency of your program because if there are
multiple Oracle clients connecting to an Oracle Server, then you need to change the
encryption and integrity level to REQUESTED in the sqlnet.ora file only on the server
side to turn on encryption or integrity for all connections. This saves time and effort
because you do not have to change the settings for each client separately.

Chapter 9
Support for Data Encryption and Integrity

9-7

Table 9–3 lists the parameter information for the JDBC Thin driver. These parameters
are defined in the oracle.jdbc.OracleConnection interface.

Table 9-3 Thin Driver Client Parameters for Encryption and Integrity

Parameter Name Parameter
Type

Possible Settings

CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL String REJECTED ACCEPTED REQUESTED
REQUIRED

CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES String AES256, AES192, AES128, 3DES168,
3DES112

CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL String REJECTED ACCEPTED REQUESTED
REQUIRED

CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES String SHA1

Note:

• Oracle Advanced Security support for the Thin driver is incorporated
directly into the JDBC classes JAR file. So, there is no separate version
for domestic and export editions. Only parameter settings that are
suitable for an export edition are possible.

9.4.4 Setting Encryption and Integrity Parameters in Java
Use a Java properties object, that is, an instance of java.util.Properties, to set the
data encryption and integrity parameters supported by the JDBC Thin driver.

The following example instantiates a Java properties object, uses it to set each of the
parameters in Table 9-3, and then uses the properties object in opening a connection
to the database:

...
Properties prop = new Properties();
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL,
"REQUIRED");
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES,
"(AES256)");
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL,
"REQUESTED");
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES,
"(SHA1)");

OracleDataSource ods = new OracleDataSource();
ods.setProperties(prop);
ods.setURL("jdbc:oracle:thin:@localhost:5221:main");
Connection conn = ods.getConnection();
...

The parentheses around the values encryption type and checksum type allow for lists
of values. When multiple values are supplied, the server and the client negotiate to
determine which value is to be actually used.

Chapter 9
Support for Data Encryption and Integrity

9-8

Example

Example 9-3 is a complete class that sets data encryption and integrity parameters
before connecting to a database to perform a query.

Note:

In the example, the string REQUIRED is retrieved dynamically through
functionality of the AnoServices and Service classes. You have the option of
retrieving the strings in this manner or including them in the software code as
shown in the previous examples

Before running this example, you must turn on encryption in the sqlnet.ora file. For
example, the following lines will turn on AES256, AES192, and AES128 for the
encryption and SHA1 for the checksum:

 SQLNET.ENCRYPTION_SERVER = ACCEPTED
 SQLNET.CRYPTO_CHECKSUM_SERVER = ACCEPTED
 SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER = (SHA1)
 SQLNET.ENCRYPTION_TYPES_SERVER = (AES256, AES192, AES128)
 SQLNET.CRYPTO_SEED = 2z0hslkdharUJCFtkwbjOLbgwsj7vkqt3bGoUylihnvkhgkdsbdskkKGhdk

Example 9-3 Setting Data Encryption and Integrity Parameters

import java.sql.*;
import java.util.Properties;
import oracle.net.ano.AnoServices;
import oracle.jdbc.*;

public class DemoAESAndSHA1
{
 static final String USERNAME= "HR";
 static final String PASSWORD= "hr";
 static final String URL = "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=localhost)(PORT=5221))"
 +"(CONNECT_DATA=(SERVICE_NAME=orcl)))";

 public static final void main(String[] argv)
 {
 DemoAESAndSHA1 demo = new DemoAESAndSHA1();
 try
 {
 demo.run();
 }catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }

 void run() throws SQLException
 {
 OracleDriver dr = new OracleDriver();
 Properties prop = new Properties();

 // We require the connection to be encrypted with either AES256 or AES192.
 // If the database doesn't accept such a security level, then the connection

Chapter 9
Support for Data Encryption and Integrity

9-9

attempt will fail.

prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL,AnoSe
rvices.ANO_REQUIRED);

prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES,"("
+ AnoServices.ENCRYPTION_AES256
 + "," + AnoServices.ENCRYPTION_AES192 + ")");

 // We also require the use of the SHA1 algorithm for data integrity checking.

prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL,AnoServ
ices.ANO_REQUIRED);
 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES,
"(" + AnoServices.CHECKSUM_SHA1 + ")");
 prop.setProperty("user",DemoAESAndSHA1.USERNAME);
 prop.setProperty("password",DemoAESAndSHA1.PASSWORD);
 OracleConnection oraConn = (OracleConnection)dr.connect(DemoAESAndSHA1.URL,prop);
 System.out.println("Connection created! Encryption algorithm is: " +
oraConn.getEncryptionAlgorithmName() + ", data
 integrity algorithm is: " + oraConn.getDataIntegrityAlgorithmName());
 oraConn.close();
 }

}

9.5 Support for SSL
This section describes the following topics:

• Overview of JDBC Support for SSL

• About Managing Certificates and Wallets

• About Keys and certificates containers

• Database Connectivity Over TLS Version 1.2 Using JDBC Thin and JKS

• Automatic SSL Connection Configuration

• Support for Key Store Service

9.5.1 Overview of JDBC Support for SSL

Oracle Database 19c provides support for the Secure Sockets Layer (SSL) protocol.
SSL is a widely used industry standard protocol that provides secure communication
over a network. SSL provides authentication, data encryption, and data integrity. It
provides a secure enhancement to the standard TCP/IP protocol, which is used for
Internet communication.

SSL uses digital certificates that comply with the X.509v3 standard for authentication
and a public and private key pair for encryption. SSL also uses secret key
cryptography and digital signatures to ensure privacy and integrity of data. When a
network connection over SSL is initiated, the client and server perform an SSL
handshake that includes the following steps:

Chapter 9
Support for SSL

9-10

• Client and server negotiate about the cipher suites to use. This includes deciding
on the encryption algorithms to be used for data transfer.

• Server sends its certificate to the client, and the client verifies that the certificate
was signed by a trusted certification authority (CA). This step verifies the identity of
the server.

• If client authentication is required, the client sends its own certificate to the server,
and the server verifies that the certificate was signed by a trusted CA.

• Client and server exchange key information using public key cryptography. Based
on this information, each generates a session key. All subsequent communications
between the client and the server is encrypted and decrypted by using this set of
session keys and the negotiated cipher suite.

Note:

In Oracle Database 11g Release 1 (11.1), SSL authentication is supported in
the thin driver. So, you do not need to provide a user name/password pair if
you are using SSL authentication.

SSL Terminology

The following terms are commonly used in the SSL context:

• Certificate: A certificate is a digitally signed document that binds a public key with
an entity. The certificate can be used to verify that the public key belongs to that
individual.

• Certification authority: A certification authority (CA), also known as certificate
authority, is an entity which issues digitally signed certificates for use by other
parties.

• Cipher suite: A cipher suite is a set of cryptographic algorithms and key sizes
used to encrypt data sent over an SSL-enabled network.

• Private key: A private key is a secret key, which is never transmitted over a
network. The private key is used to decrypt a message that has been encrypted
using the corresponding public key. It is also used to sign certificates. The
certificate is verified using the corresponding public key.

• Public key: A public key is an encryption key that can be made public or sent by
ordinary means such as an e-mail message. The public key is used for encrypting
the message sent over SSL. It is also used to verify a certificate signed by the
corresponding private key.

• Key Store or Wallet: A wallet is a password-protected container that is used to
store authentication and signing credentials, including private keys, certificates,
and trusted certificates required by SSL.

• Security Provider: A Java implementation that provides some functionality related
to security. A provider is responsible for decoding a key store file.

• Key Store Service (KSS): A component of Oracle Platform Security services.
KSS enables a key store to be referenced as a URI with kss:// scheme (rather
than a file name).

Chapter 9
Support for SSL

9-11

Java Version of SSL

The Java Secure Socket Extension (JSSE) provides a framework and an
implementation for a Java version of the SSL and TLS protocols. JSSE provides
support for data encryption, server and client authentication, and message integrity. It
abstracts the complex security algorithms and handshaking mechanisms and
simplifies application development by providing a building block for application
developers, which they can directly integrate into their applications. JSSE is integrated
into Java Development Kit (JDK) 1.4 and later, and supports SSL version 2.0 and 3.0.

Oracle strongly recommends that you have a clear understanding of the JavaTM
Secure Socket Extension (JSSE) framework before using SSL in the Oracle JDBC
drivers.

The JSSE standard application programming interface (API) is available in the
javax.net, javax.net.ssl, and javax.security.cert packages. These packages
provide classes for creating and configuring sockets, server sockets, SSL sockets, and
SSL server sockets. The packages also provide a class for secure HTTP connections,
a public key certificate API compatible with JDK1.1-based platforms, and interfaces for
key and trust managers.

SSL works the same way, as in any networking environment, in Oracle Database 18c.

Note:

In order to use JSSE in your program, you must have clear understanding of
JavaTM Secure Socket Extension (JSSE) framework.

9.5.2 About Managing Certificates and Wallets
To establish an SSL connection with a JDBC client, Thin or OCI, Oracle database
server sends its certificate, which is stored in its wallet. The client may or may not
need a certificate or wallet depending on the server configuration.

The Oracle JDBC Thin driver uses the JSSE framework to create an SSL connection.
It uses the default provider (SunJSSE) to create an SSL context. However you can
provide your own provider.

You do not need a certificate for the client, unless the SSL_CLIENT_AUTHENTICATION
parameter is set on the server.

9.5.3 About Keys and certificates containers
Java clients can use multiple types of containers such as Oracle wallets, JKS,
PKCS12, and so on, as long as a provider is available. For Oracle wallets, OraclePKI
provider must be used because the PKCS12 support provided by SunJSSE provider
does not support all the features of PKCS12. In order to use OraclePKI provider, the
following JARs are required:

• oraclepki.jar

• osdt_cert.jar

• osdt_core.jar

Chapter 9
Support for SSL

9-12

All these JAR files should be under $ORACLE_HOME/jlib directory.

9.5.4 Database Connectivity Over TLS Version 1.2 Using JDBC Thin
and JKS

Perform the following steps to configure the Oracle JDBC thin driver to connect to the
Database using TLS version 1.2:

• Always use the latest update of the JDK

Use the latest update of either JDK 7 or JDK 8 because the updated versions
include bug fixes that are required for using SSL version 1.2.

• Install the JCE files

Install the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction
Policy Files because irrespective of the JDK version that you use, the strong
cipher suites (for example TLS_RSA_WITH_AES_256_CBC_SHA256) are not enabled
without them. You can download these files from the following page:

http://www.oracle.com/technetwork/java/javase/downloads/jce-7-
download-432124.html

Also, if you are using JDK 7, then you must explicitly enable the strong cipher
suites. For example, if you are using a strong cipher suite such as
TLS_RSA_WITH_AES_256_CBC_SHA256 with JDK 7, then you must enable it through
the oracle.net.ssl_cipher_suites connection property.

• Use JKS files or wallets

Note:

Starting from Oracle Database Release 18c, you can specify TLS
configuration properties in a new configuration file called
ojdbc.properties. The use of this file eases the connectivity to
Database services on Cloud.

See Also:

Oracle Database JDBC Java API Reference

After performing all the preceding steps, if you run into more issues, then you can turn
on tracing to diagnose the problems using -Djavax.net.debug=all option.

9.5.5 Automatic SSL Connection Configuration

Starting from Oracle Database Release 18c, you can use default values or
programmatic logic for resolving the connection configuration values without manually
adding or updating the security provider. You can resolve the configuration values in
the following two ways:

• Provider Resolution

Chapter 9
Support for SSL

9-13

http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

• Automatic Key Store Type (KSS) Resolution

9.5.5.1 Provider Resolution

For certain key store types, the JDBC driver can resolve the provider implementation
that is used to load the key store. For these types, it is not necessary to register the
provider with Java security. As long as the provider implementation is on the
CLASSPATH, the driver can instantiate the security provider.

The following key store types map to a known provider:

• SSO: oracle.security.pki.OraclePKIProvider

• KSS:
oracle.security.jps.internal.keystore.provider.FarmKeyStoreProvider

The driver attempts to resolve the provider only if there is no provider registered for the
specified type.

If the oraclepki.jar file is on the CLASSPATH, then the driver can automatically load
the Oracle PKI Provider in the following way:

java –cp oraclepki.jar:ojdbc8.jar –D javax.net.ssl.keyStore=/path/to/
wallet/cwallet.sso MyApp

Similarly, for a specified value of the oracle.net.wallet_location connection
property, the driver can automatically load the Oracle PKI Provider in the following
way:

java –cp .:oraclepki.jar:ojdbc8.jar –D oracle.net.wallet_location=file:/
path/to/wallet/cwallet.sso MyApp

Note:

For PKCS12 types created by the orapki tool (The ewallet.p12 file), you
may still need to register the OraclePKIProvider with Java security because
the PKCS12 file created by the orapki tool includes the ASN1 Key Bag
element (Type Code: 1.2.840.113549.1.12.10.1.1). The Sun PKCS12
implementation does not support the Key Bag type and throws an error when
attempting to read the ewallet.p12 file. For HotSpot and Open JDK users,
the Sun Provider comes bundled as the PKCS12 provider. This means that
the PKCS12 provider will already have a registered provider, and the driver
will make no attempt to override this.

9.5.5.2 Automatic Key Store Type (KSS) Resolution

The JDBC driver can resolve common key store types based on the value of the
javax.net.ssl.keyStore and javax.net.ssl.trustStore properties, eliminating the
need to specify the type using these properties.

Key Store or Trust Store with a Recognized File Extension

Chapter 9
Support for SSL

9-14

A key store or trust store with a recognized file extension maps to the following types:

• File extension .jks resolves to javax.net.ssl.keyStoreType as JKS:

java –cp ojdbc8.jar –D javax.net.ssl.keyStore=/path/to/keystore/
keystore.jks MyApp

• File extension .sso resolves to javax.net.ssl.keyStoreType as SSO:

 java –cp ojdbc8.jar –D
javax.net.ssl.keyStore=/path/to/keystore/keystore.sso MyApp

• File extension .p12 resolves to javax.net.ssl.keyStoreType as PKCS12:

 java –cp ojdbc8.jar –D
javax.net.ssl.keyStore=/path/to/keystore/keystore.p12 MyApp

• File extension .pfx resolves to javax.net.ssl.keyStoreType as PKCS12:

 java –cp ojdbc8.jar –D
javax.net.ssl.keyStore=/path/to/keystore/keystore.pfx MyApp

Key Store or Trust Store with a URI

If the key store or the trust store is a URI with a kss:// scheme, this maps to type
KSS:

 java –cp ojdbc8.jar –D
javax.net.ssl.keyStore=kss://MyStripe/MyKeyStore MyApp

Note:

You can set the javax.net.ssl.trustStoreType and
javax.net.ssl.keyStoreType properties for overriding the default type
resolution.

9.5.6 Support for Default SSL Context

For applications that require finer control over the TLS configuration, you can configure
the JDBC driver to use the SSLContext returned by the SSLContext.getDefault
method. Use one of the following methods for the driver to use the default SSLContext:

• javax.net.ssl.keyStore=NONE

• javax.net.ssl.trustStore=NONE

You can use the default SSLContext to support key store types that are not file-based.
Common examples of such key store types include hardware-based smart cards. Key
store types that require programmatic call to the
load(KeyStore.LoadStoreParameter) method also belong to this category.

Chapter 9
Support for SSL

9-15

See Also:

• https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
SSLContext.html#getDefault--

• https://docs.oracle.com/javase/8/docs/api/java/security/
KeyStore.html#load-java.security.KeyStore.LoadStoreParameter-

9.5.7 Support for Key Store Service

This release of Oracle Database introduces support for Key Store Service (KSS) in the
JDBC driver. So, if you have configured a Key Store Service in a WebLogic server,
then JDBC applications can now integrate with the existing Key Store Service
configuration.

The driver can load the key stores that are managed by the Key Store Service. If the
value of the javax.net.ssl.keyStore property or the javax.net.ssl.trustStore
property is a URI with kss:// scheme, then the driver loads the key store from Key
Store Service.

For permission-based protection, the following permission must be granted to the
ojdbc JAR file:

 permission KeyStoreAccessPermission
"stripeName=*,keystoreName=*,alias=*", "read";

This permission grants access to every key store. For limiting the scope of access, you
can replace the asterisk wild cards (*) with a specific application stripe and a key store
name. The driver does not load the key store as a privileged action, which means that
the KeyStoreAccessPermission must also be granted to the application code base.

9.6 Support for Kerberos
This section discusses the following topics:

• Overview of JDBC Support for Kerberos

• Configuring Windows to Use Kerberos

• Configuring Oracle Database to Use Kerberos

• Code Example for Using Kerberos

9.6.1 Overview of JDBC Support for Kerberos
Kerberos is a network authentication protocol that provides the tools of authentication
and strong cryptography over the network. Kerberos helps you secure your information
systems across your entire enterprise by using secret-key cryptography. The Kerberos
protocol uses strong cryptography so that a client or a server can prove its identity to
its server or client across an insecure network connection. After a client and server
have used Kerberos to prove their identity, they can also encrypt all of their
communications to assure privacy and data integrity as they go about their business.

Chapter 9
Support for Kerberos

9-16

https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLContext.html#getDefault--
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLContext.html#getDefault--
https://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html#load-java.security.KeyStore.LoadStoreParameter-
https://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html#load-java.security.KeyStore.LoadStoreParameter-

The Kerberos architecture is centered around a trusted authentication service called
the key distribution center, or KDC. Users and services in a Kerberos environment are
referred to as principals; each principal shares a secret, such as a password, with the
KDC. A principal can be a user such as HR or a database server instance.

Starting from 12c Release 1, Oracle Database also supports cross-realm
authentication for Kerberos. If you add the referred realm appropriately in the
domain_realms section of the kerberos configuration file, then being in one particular
realm, you can access the services of another realm.

9.6.2 Configuring Windows to Use Kerberos
A good Kerberos client providing klist, kinit, and other tools, can be found at the
following link:

http://web.mit.edu/kerberos/dist/index.html

This client also provides a nice GUI.

You need to make the following changes to configure Kerberos on your Windows
machine:

1. Right-click the My Computer icon on your desktop.

2. Select Properties. The System Properties dialog box is displayed.

3. Select the Advanced tab.

4. Click Environment Variables. The Environment Variables dialog box is displayed.

5. Click New to add a new user variable. The New User Variable dialog box is
displayed.

6. Enter KRB5CCNAME in the Variable name field.

7. Enter FILE:C:\Documents and Settings\<user_name>\krb5cc in the Variable
value field.

8. Click OK to close the New User Variable dialog box.

9. Click OK to close the Environment Variables dialog box.

10. Click OK to close the System Properties dialog box.

Note:

C:\WINDOWS\krb5.ini file has the same content as krb5.conf file.

9.6.3 Configuring Oracle Database to Use Kerberos
Perform the following steps to configure Oracle Database to use Kerberos:

1. Use the following command to connect to the database:

SQL> connect system
Enter password: password

2. Use the following commands to create a user CLIENT@US.ORACLE.COM that is
identified externally:

Chapter 9
Support for Kerberos

9-17

http://web.mit.edu/kerberos/dist/index.html

SQL> create user "CLIENT@US.ORACLE.COM" identified externally;
SQL> grant create session to "CLIENT@US.ORACLE.COM";

3. Use the following commands to connect to the database as sysdba and dismount
it:

SQL> connect / as sysdba
SQL> shutdown immediate;

4. Add the following line to $T_WORK/t_init1.ora file:

OS_AUTHENT_PREFIX=""

5. Use the following command to restart the database:

SQL> startup pfile=t_init1.ora

6. Modify the sqlnet.ora file to include the following lines:

names.directory_path = (tnsnames)
#Kerberos
sqlnet.authentication_services = (beq,kerberos5)
sqlnet.authentication_kerberos5_service = dbji
sqlnet.kerberos5_conf = /home/Jdbc/Security/kerberos/krb5.conf
sqlnet.kerberos5_keytab = /home/Jdbc/Security/kerberos/dbji.oracleserver
sqlnet.kerberos5_conf_mit = true
sqlnet.kerberos_cc_name = /tmp/krb5cc_5088
logging (optional):
trace_level_server=16
trace_directory_server=/scratch/sqlnet/

7. Use the following commands to verify that you can connect through SQL*Plus:

> kinit client
> klist
 Ticket cache: FILE:/tmp/krb5cc_5088
 Default principal: client@US.ORACLE.COM

 Valid starting Expires Service principal
 06/22/06 07:13:29 06/22/06 17:13:29 krbtgt/US.ORACLE.COM@US.ORACLE.COM

 Kerberos 4 ticket cache: /tmp/tkt5088
 klist: You have no tickets cached
> sqlplus '/@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=oracleserver.mydomain.com)
(PORT=5221))
(CONNECT_DATA=(SERVICE_NAME=orcl)))'

9.6.4 Code Example for Using Kerberos
This following example demonstrates the new Kerberos authentication feature that is
part of Oracle Database 12c Release 1 (12.1) JDBC thin driver. This demo covers two
scenarios:

• In the first scenario, the OS maintains the user name and credentials. The
credentials are stored in the cache and the driver retrieves the credentials before
trying to authenticate to the server. This scenario is in the module
connectWithDefaultUser().

Chapter 9
Support for Kerberos

9-18

Note:

1. Before you run this part of the demo, use the following command to
verify that you have valid credentials:

> /usr/kerberos/bin/kinit client
where, the password is welcome.

2. Use the following command to list your tickets:

> /usr/kerberos/bin/klist

• The second scenario covers the case where the application wants to control the
user credentials. This is the case of the application server where multiple web
users have their own credentials. This scenario is in the module
connectWithSpecificUser().

Note:

To run this demo, you need to have a working setup, that is, a Kerberos
server up and running, and an Oracle database server that is configured
to use Kerberos authentication. You then need to change the URLs used
in the example to compile and run it.

Example 9-4 Using Kerberos Authentication to Connect to the Database

import com.sun.security.auth.module.Krb5LoginModule;
import java.io.IOException;

import java.security.PrivilegedExceptionAction;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import java.util.HashMap;
import java.util.Properties;
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleDriver;
import oracle.net.ano.AnoServices;
public class KerberosJdbcDemo
{
 String url ="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)"+
 "(HOST=oracleserver.mydomain.com)(PORT=5221))(CONNECT_DATA=" +
 "(SERVICE_NAME=orcl)))";

 public static void main(String[] arv)
 {
 /* If you see the following error message [Mechanism level: Could not load
 * configuration file c:\winnt\krb5.ini (The system cannot find the path

Chapter 9
Support for Kerberos

9-19

 * specified] it's because the JVM cannot locate your kerberos config file.
 * You have to provide the location of the file. For example, on Windows,
 * the MIT Kerberos client uses the config file: C\WINDOWS\krb5.ini:
 */
 // System.setProperty("java.security.krb5.conf","C:\\WINDOWS\\krb5.ini");
 System.setProperty("java.security.krb5.conf","/home/Jdbc/Security/kerberos/
krb5.conf");

 KerberosJdbcDemo kerberosDemo = new KerberosJdbcDemo();
 try
 {
 System.out.println("Attempt to connect with the default user:");
 kerberosDemo.connectWithDefaultUser();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 try
 {
 System.out.println("Attempt to connect with a specific user:");
 kerberosDemo.connectWithSpecificUser();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 void connectWithDefaultUser() throws SQLException
 {
 OracleDriver driver = new OracleDriver();
 Properties prop = new Properties();

prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICE
S,
 "("+AnoServices.AUTHENTICATION_KERBEROS5+")");

prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_KRB5_MU
TUAL,
 "true");

 /* If you get the following error [Unable to obtain Princpal Name for
 * authentication] although you know that you have the right TGT in your
 * credential cache, then it's probably because the JVM can't locate your
 * cache.

 *
 * Note that the default location on windows is "C:\Documents and Settings
\krb5cc_username".
 */

 //
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_KRB5_CC
_NAME,

 /*
 On linux:
 > which kinit

Chapter 9
Support for Kerberos

9-20

 /usr/kerberos/bin/kinit
 > ls -l /etc/krb5.conf
 lrwxrwxrwx 1 root root 47 Jun 22 06:56 /etc/krb5.conf -> /home/Jdbc/
Security/kerberos/krb5.conf

 > kinit client
 Password for client@US.ORACLE.COM:
 > klist
 Ticket cache: FILE:/tmp/krb5cc_5088
 Default principal: client@US.ORACLE.COM

 Valid starting Expires Service principal
 11/02/06 09:25:11 11/02/06 19:25:11 krbtgt/US.ORACLE.COM@US.ORACLE.COM

 Kerberos 4 ticket cache: /tmp/tkt5088
 klist: You have no tickets cached
 */

prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_KRB5_CC
_NAME,
 "/tmp/krb5cc_5088");
 Connection conn = driver.connect(url,prop);
 String auth = ((OracleConnection)conn).getAuthenticationAdaptorName();
 System.out.println("Authentication adaptor="+auth);
 printUserName(conn);
 conn.close();
 }

 void connectWithSpecificUser() throws Exception
 {
 Subject specificSubject = new Subject();

 // This first part isn't really meaningful to the sake of this demo. In
 // a real world scenario, you have a valid "specificSubject" Subject that
 // represents a web user that has valid Kerberos credentials.
 Krb5LoginModule krb5Module = new Krb5LoginModule();
 HashMap sharedState = new HashMap();
 HashMap options = new HashMap();
 options.put("doNotPrompt","false");
 options.put("useTicketCache","false");
 options.put("principal","client@US.ORACLE.COM");

krb5Module.initialize(specificSubject,newKrbCallbackHandler(),sharedState,options);
 boolean retLogin = krb5Module.login();
 krb5Module.commit();
 if(!retLogin)
 throw new Exception("Kerberos5 adaptor couldn't retrieve credentials (TGT)
from the cache");

 // to use the TGT from the cache:
 // options.put("useTicketCache","true");
 // options.put("doNotPrompt","true");
 // options.put("ticketCache","C:\\Documents and Settings\\user\\krb5cc");
 // krb5Module.initialize(specificSubject,null,sharedState,options);

 // Now we have a valid Subject with Kerberos credentials. The second scenario
 // really starts here:

Chapter 9
Support for Kerberos

9-21

 // execute driver.connect(...) on behalf of the Subject 'specificSubject':
 Connection conn =
 (Connection)Subject.doAs(specificSubject, new PrivilegedExceptionAction()
 {
 public Object run()
 {
 Connection con = null;
 Properties prop = new Properties();
 prop.setProperty(AnoServices.AUTHENTICATION_PROPERTY_SERVICES,
 "(" + AnoServices.AUTHENTICATION_KERBEROS5 + ")");
 try
 {
 OracleDriver driver = new OracleDriver();
 con = driver.connect(url, prop);

 } catch (Exception except)
 {
 except.printStackTrace();
 }
 return con;
 }
 });

 String auth = ((OracleConnection)conn).getAuthenticationAdaptorName();
 System.out.println("Authentication adaptor="+auth);
 printUserName(conn);
 conn.close();
 }

 void printUserName(Connection conn) throws SQLException
 {
 Statement stmt = null;
 try
 {
 stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("select user from dual");
 while(rs.next())
 System.out.println("User is:"+rs.getString(1));
 rs.close();
 }
 finally
 {
 if(stmt != null)
 stmt.close();
 }
 }
}

class KrbCallbackHandler implements CallbackHandler
{
 public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException
 {
 for (int i = 0; i < callbacks.length; i++)
 {
 if (callbacks[i] instanceof PasswordCallback)
 {
 PasswordCallback pc = (PasswordCallback)callbacks[i];
 System.out.println("set password to 'welcome'");
 pc.setPassword((new String("welcome")).toCharArray());
 } else

Chapter 9
Support for Kerberos

9-22

 {
 throw new UnsupportedCallbackException(callbacks[i],
 "Unrecognized Callback");
 }
 }
 }
}

9.7 Support for RADIUS
This section describes the following concepts:

• Overview of JDBC Support for RADIUS

• Configuring Oracle Database to Use RADIUS

• Code Example for Using RADIUS

9.7.1 Overview of JDBC Support for RADIUS
Oracle Database 11g Release 1 introduced support for Remote Authentication Dial-In
User Service (RADIUS). RADIUS is a client/server security protocol that is most widely
known for enabling remote authentication and access. Oracle Advanced Security uses
this standard in a client/server network environment to enable use of any
authentication method that supports the RADIUS protocol. RADIUS can be used with
a variety of authentication mechanisms, including token cards and smart cards.

9.7.2 Configuring Oracle Database to Use RADIUS
Perform the following steps to configure Oracle Database to use RADIUS:

1. Use the following command to connect to the database:

SQL> connect system
Enter password: password

2. Use the following commands to create a new user aso from within a database:

SQL> create user aso identified externally;
SQL> grant create session to aso;

3. Use the following commands to connect to the database as sysdba and dismount
it:

SQL> connect / as sysdba
SQL> shutdown immediate;

4. Add the following lines to the t_init1.ora file:

os_authent_prefix = ""

Note:

Once the test is over, you need to revert the preceding changes made to
the t_init1.ora file.

5. Use the following command to restart the database:

Chapter 9
Support for RADIUS

9-23

SQL> startup pfile=?/work/t_init1.ora

6. Modify the sqlnet.ora file so that it contains only these lines:

sqlnet.authentication_services = (beq, radius)
sqlnet.radius_authentication = <RADUIUS_SERVER_HOST_NAME>
sqlnet.radius_authentication_port = 1812
sqlnet.radius_authentication_timeout = 120
sqlnet.radius_secret=/home/Jdbc/Security/radius/radius_key
logging (optional):
trace_level_server=16
trace_directory_server=/scratch/sqlnet/

7. Use the following command to verify that you can connect through SQL*Plus:

>sqlplus 'aso/1234@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=oracleserver.mydomain.com)(PORT=5221))
(CONNECT_DATA=(SERVICE_NAME=orcl)))'

9.7.3 Code Example for Using RADIUS
This example demonstrates the new RADIUS authentication feature that is a part of
Oracle Database 12c Release 1 (12.1) JDBC thin driver. You need to have a working
setup, that is, a RADIUS server up and running, and an Oracle database server that is
configured to use RADIUS authentication. You then need to change the URLs given in
the example to compile and run it.

Example 9-5 Using RADIUS Authentication to Connect to the Database

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleDriver;
import oracle.net.ano.AnoServices;
public class RadiusJdbcDemo
{
 String url ="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)"+
 "(HOST=oracleserver.mydomain.com)(PORT=5221))(CONNECT_DATA=" +
 "(SERVICE_NAME=orcl)))";

 public static void main(String[] arv)
 {
 RadiusJdbcDemo radiusDemo = new RadiusJdbcDemo();
 try
 {
 radiusDemo.connect();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 /*
 * This method attempts to logon to the database using the RADIUS
 * authentication protocol.
 *
 * It should print the following output to stdout:

Chapter 9
Support for RADIUS

9-24

 * ---
 * Authentication adaptor=RADIUS
 * User is:ASO
 * ---
 */
 void connect() throws SQLException
 {
 OracleDriver driver = new OracleDriver();
 Properties prop = new Properties();

prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICE
S,
 "("+AnoServices.AUTHENTICATION_RADIUS+")");
 // The user "aso" needs to be properly setup on the radius server with
 // password "1234".
 prop.setProperty("user","aso");
 prop.setProperty("password","1234");

 Connection conn = driver.connect(url,prop);
 String auth = ((OracleConnection)conn).getAuthenticationAdaptorName();
 System.out.println("Authentication adaptor="+auth);
 printUserName(conn);
 conn.close();
 }

 void printUserName(Connection conn) throws SQLException
 {
 Statement stmt = null;
 try
 {
 stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("select user from dual");
 while(rs.next())
 System.out.println("User is:"+rs.getString(1));
 rs.close();
 }
 finally
 {
 if(stmt != null)
 stmt.close();
 }
 }
}

9.8 About Secure External Password Store
As an alternative for large-scale deployments where applications use password
credentials to connect to databases, it is possible to store such credentials in a client-
side Oracle wallet. An Oracle wallet is a secure software container that is used to store
authentication and signing credentials.

Storing database password credentials in a client-side Oracle wallet eliminates the
need to embed user names and passwords in application code, batch jobs, or scripts.
This reduces the risk of exposing passwords in the scripts and application code, and
simplifies maintenance because you do not need to change your code each time user
names and passwords change. In addition, if you do not have to change the

Chapter 9
About Secure External Password Store

9-25

application code, then it also becomes easier to enforce password management
policies for these user accounts.

You can set the oracle.net.wallet_location connection property to specify the
wallet location. The JDBC driver can then retrieve the user name and password pair
from this wallet.

See Also:

• Oracle Database Administrator's Guide for more information about
configuring your client to use secure external password store and for
information about managing credentials in it

• Oracle Database Security Guide for more information about managing
the secure external password store for password credentials

Chapter 9
About Secure External Password Store

9-26

10
Proxy Authentication

Oracle Java Database Connectivity (JDBC) provides proxy authentication, also called
N-tier authentication. This feature is supported through both the JDBC Oracle Call
Interface (OCI) driver and the JDBC Thin driver. This chapter contains the following
sections:

• About Proxy Authentication

• Types of Proxy Connections

• Creating Proxy Connections

• Closing a Proxy Session

• Caching Proxy Connections

• Limitations of Proxy Connections

Note:

Oracle Database supports proxy authentication functionality in three tiers
only. It does not support it across multiple middle tiers.

10.1 About Proxy Authentication
Proxy authentication is the process of using a middle tier for user authentication. You
can design a middle tier server to proxy clients in a secure fashion by using the
following three forms of proxy authentication:

• The middle tier server authenticates itself with the database server and a client. In
this case, an application user or another application, authenticates itself with the
middle tier server. Client identities can be maintained all the way through to the
database.

• The client, that is, a database user, is not authenticated by the middle tier server.
The client's identity and database password are passed through the middle tier
server to the database server for authentication.

• The client, that is, a global user, is authenticated by the middle tier server, and
passes either a Distinguished name (DN) or a Certificate through the middle tier
for retrieving the client's user name.

Note:

Operations done on behalf of a client by a middle tier server can be
audited.

10-1

In all cases, an administrator must authorize the middle tier server to proxy a client,
that is, to act on behalf of the client. Suppose, the middle tier server initially connects
to the database as user HR and activates a proxy connection as user jeff, and then
issues the following statement to authorize the middle tier server to proxy a client:

ALTER USER jeff GRANT CONNECT THROUGH HR;

You can also:

• Specify roles that the middle tier is permitted to activate when connecting as the
client. For example,

CREATE ROLE role1;
GRANT SELECT ON employees TO role1;
ALTER USER jeff GRANT CONNECT THROUGH HR ROLE role1;

The role clause limits the access only to those database objects that are
mentioned in the list of the roles. The list of roles can be empty.

• Find the users who are currently authorized to connect through a middle tier by
querying the PROXY_USERS data dictionary view.

• Disallow a proxy connection by using the REVOKE CONNECT THROUGH clause of
ALTER USER statement.

Note:

In case of proxy authentication, a JDBC connection to the database creates
a database session during authentication, and then other sessions can be
created during the life time of the connection.

You need to use the different fields and methods present in the
oracle.jdbc.OracleConnection interface to set up the different types of proxy
connections.

10.2 Types of Proxy Connections
You can create proxy connections using any one of the following options:

• USER NAME

This is done by supplying the user name or the password or both. The SQL
statement for specifying authentication using password is:

ALTER USER jeff GRANT CONNECT THROUGH HR AUTHENTICATED USING password;

In this case, jeff is the user name and HR is the proxy for jeff.

The password option exists for additional security. Having no authenticated
clause implies default authentication, which is using only the user name without
the password. The SQL statement for specifying default authentication is:

ALTER USER jeff GRANT CONNECT THROUGH HR

• DISTINGUISHED NAME

Chapter 10
Types of Proxy Connections

10-2

This is a global name in lieu of the password of the user being proxied for. An
example of the corresponding SQL statement using a distinguished name is:

CREATE USER jeff IDENTIFIED GLOBALLY AS
'CN=jeff,OU=americas,O=oracle,L=redwoodshores,ST=ca,C=us';

The string that follows the identified globally as clause is the distinguished
name. It is then necessary to authenticate using this distinguished name. The
corresponding SQL statement to specify authentication using distinguished name
is:

ALTER USER jeff GRANT CONNECT THROUGH HR AUTHENTICATED USING DISTINGUISHED NAME;

• CERTIFICATE

This is a more encrypted way of passing the credentials of the user, who is to be
proxied, to the database. The certificate contains the distinguished name encoded
in it. One way of generating the certificate is by creating a wallet and then
decoding the wallet to get the certificate. The wallet can be created using runutl
mkwallet. It is then necessary to authenticate using the generated certificate. The
SQL statement for specifying authentication using certificate is:

ALTER USER jeff GRANT CONNECT THROUGH HR AUTHENTICATED USING CERTIFICATE;

Note:

The use of certificates for proxy authentication will be desupported in
future Oracle Database releases.

Note:

• All the options can be associated with roles.

• When opening a new proxied connection, a new session is started on
the Database server. If you start a global transaction and then call the
openProxySession method, then, at this point, you are no longer a part of
the global transaction and instead it is like you are in a freshly created
JDBC connection. Typically, this never happens because the
openProxySession method is called prior to creating or resuming a global
transaction. In such a case, you are still a part of the global transaction.

10.3 Creating Proxy Connections
A user, say jeff, has to connect to the database through another user, say HR. The
proxy user, HR, should have an active authenticated connection. A proxy session is
then created on this active connection, with the driver issuing a command to the server
to create a session for the user, jeff. The server returns the new session ID, and the
driver sends a session switch command to switch to this new session.

The JDBC OCI and Thin driver switch sessions in the same manner. The drivers
permanently switch to the new session, jeff. As a result, the proxy session, HR, is not
available until the new session, jeff, is closed.

Chapter 10
Creating Proxy Connections

10-3

Note:

You can use the isProxySession method from the
oracle.jdbc.OracleConnection interface to check if the current session
associated with your connection is a proxy session. This method returns
true if the current session associated with the connection is a proxy session.

A new proxy session is opened by using the following method from the
oracle.jdbc.OracleConnection interface:

void openProxySession(int type, java.util.Properties prop) throws SQLExceptionOpens

Where,

type is the type of the proxy session and can have the following values:

• OracleConnection.PROXYTYPE_USER_NAME

This type is used for specifying the user name.

• OracleConnection.PROXYTYPE_DISTINGUISHED_NAME

This type is used for specifying the distinguished name of the user.

• OracleConnection.PROXYTYPE_CERTIFICATE

This type is used for specifying the proxy certificate.

prop is the property value of the proxy session and can have the following values:

• PROXY_USER_NAME

This property value should be used with the type
OracleConnection.PROXYTYPE_USER_NAME. The value should be a
java.lang.String.

• PROXY_DISTINGUISHED_NAME

This property value should be used with the type
OracleConnection.PROXYTYPE_DISTINGUISHED_NAME. The value should be a
java.lang.String.

• PROXY_CERTIFICATE

This property value should be used with the type
OracleConnection.PROXYTYPE_CERTIFICATE. The value is a bytep[] array that
contains the certificate.

• PROXY_ROLES

This property value can be used with the following types:

– OracleConnection.PROXYTYPE_USER_NAME

– OracleConnection.PROXYTYPE_DISTINGUISHED_NAME

– OracleConnection.PROXYTYPE_CERTIFICATE

The value should be a java.lang.String.

• PROXY_SESSION

This property value is used with the close method to close the proxy session.

Chapter 10
Creating Proxy Connections

10-4

• PROXY_USER_PASSWORD

This property value should be used with the type
OracleConnection.PROXYTYPE_USER_NAME. The value should be a
java.lang.String.

The following code snippet shows the use of the openProxySession method:

 java.util.Properties prop = new java.util.Properties();
 prop.put(OracleConnection.PROXY_USER_NAME, "jeff");
 String[] roles = {"role1", "role2"};
 prop.put(OracleConnection.PROXY_ROLES, roles);
 conn.openProxySession(OracleConnection.PROXYTYPE_USER_NAME, prop);

10.4 Closing a Proxy Session
You can close the proxy session opened with the
OracleConnection.openProxySession method by passing the
OracleConnection.PROXY_SESSION parameter to the OracleConnection.close method
in the following way:

OracleConnection.close(OracleConnection.PROXY_SESSION);

This is similar to closing a proxy session on a non-cached connection. The standard
close method must be called explicitly to close the connection itself. If the close
method is called directly, without closing the proxy session, then both the proxy
session and the connection are closed. This can be achieved in the following way:

OracleConnection.close(OracleConnection.INVALID_CONNECTION);

10.5 Caching Proxy Connections
Proxy connections, like standard connections, can be cached. Caching proxy
connections enhances the performance. To cache a proxy connection, you need to
create a connection using one of the getConnection methods on a cache enabled
OracleDataSource object.

A proxy connection may be cached in the connection cache using the connection
attributes feature of the connection cache. Connection attributes are name/value pairs
that are user-defined and help tag a connection before returning it to the connection
cache for reuse. When the tagged connection is retrieved, it can be directly used
without having to do a round-trip to create or close a proxy session. Universal
Connection Pool supports caching of any user/password authenticated connection.
Therefore, any user authenticated proxy connection can be cached and retrieved.

It is recommended that proxy connections should not be closed without applying the
connection attributes. If a proxy connection is closed without applying the connection
attributes, the connection is returned to the connection cache for reuse, but cannot be
retrieved. The connection caching mechanism does not remember or reset session
state.

A proxy connection can be removed from the connection cache by closing the
connection directly.

Chapter 10
Closing a Proxy Session

10-5

10.6 Limitations of Proxy Connections
Closing a proxy connection automatically closes every SQL Statement created by the
proxy connection, during the proxy session or prior to the proxy session. This may
cause unexpected consequences on application pooling or statement caching. The
following code samples explain this limitation of proxy connections:

Example 1

....
public void displayName(String N) // Any function using the Proxy feature
{
 Properties props = new Properties();
 props.put("PROXY_USER_NAME", proxyUser);
 c.openProxySession(OracleConnection.PROXYTYPE_USER_NAME, props);

 c.close(OracleConnection.PROXY_SESSION);
}

public static void main (String args[]) throws SQLException
{

 PreparedStatement pstmt = conn.prepareStatement("SELECT first_name FROM
EMPLOYEES WHERE employee_id = ?");
 pstmt.setInt(1, 205);
 ResultSet rs = pstmt.executeQuery();
 while (rs.next())
 {
 displayName(rs.getString(1));
 if (rs.isClosed() // The ResultSet is already closed while closing the
connection!
 {
 throw new Exception("Your ResultSet has been prematurely closed!
Your Statement object is also dead now.");
 }
 }
}

In the preceding example, when you close the proxy connection in the displayName
method, then the PreparedStatement object and the ResultSet object also get closed.
So, if you do not check the status of the ResultSet object inside loop, then the loop
will fail when the next method is called for the second time.

Example 2

 PreparedStatement pstmt = conn.prepareStatement("SELECT first_name FROM
EMPLOYEES WHERE employee_id = ?");
 pstmt.setString(1, "205");
 ResultSet rs = pstmt.executeQuery();
 while (rs.next())
 {

 }

 Properties props = new Properties();
 props.put("PROXY_USER_NAME", proxyUser);

Chapter 10
Limitations of Proxy Connections

10-6

 conn.openProxySession(OracleConnection.PROXYTYPE_USER_NAME, props);

 conn.close(OracleConnection.PROXY_SESSION);

 // Try to use the PreparedStatement again
 pstmt.setString(1, "28960");
// This line of code will fail because the Statement is already closed while closing
the connection!
 rs = pstmt.executeQuery();

In the preceding example, the PreparedStatement object and the ResultSet object
work fine before opening the proxy connection. But, if you try to execute the same
PreparedStatement object after closing the proxy connection, then the statement fails.

Chapter 10
Limitations of Proxy Connections

10-7

Part IV
Data Access and Manipulation

This part provides a chapter that discusses about accessing and manipulating Oracle
data. It also includes chapters that provide information about Java Database
Connectivity (JDBC) support for user-defined object types, large object (LOB) and
binary file (BFILE) locators and data, object references, and Oracle collections, such
as nested tables. This part also provides chapters that discuss the result set
functionality in JDBC, JDBC row sets, and globalization support provided by Oracle
JDBC drivers.

Part IV contains the following chapters:

• Accessing and Manipulating Oracle Data

• Java Streams in JDBC

• Working with Oracle Object Types

• Working with LOBs and BFILEs

• Using Oracle Object References

• Working with Oracle Collections

• Result Set

• JDBC RowSets

• Globalization Support

11
Accessing and Manipulating Oracle Data

This chapter describes Oracle extensions (oracle.sql.* formats) and compares them
to standard Java formats (java.sql.*). Using Oracle extensions involves casting your
result sets and statements to OracleResultSet, OracleStatement,
OraclePreparedStatement, and OracleCallableStatement, as appropriate, and using
the getOracleObject, setOracleObject, getXXX, and setXXX methods of these
classes, where XXX corresponds to the types in the oracle.sql package.

This chapter covers the following topics:

• Data Type Mappings

• Data Conversion Considerations

• Result Set and Statement Extensions

• Comparison of Oracle get and set Methods to Standard JDBC

• Using Result Set Metadata Extensions

• About Using SQL CALL and CALL INTO Statements

11.1 Data Type Mappings
The Oracle JDBC drivers support standard JDBC types as well as Oracle-specific data
types. This section documents standard and Oracle-specific SQL-Java default type
mappings. This section contains the following topics:

• Table of Mappings

• Notes Regarding Mappings

11.1.1 Table of Mappings
The following table shows the default mappings between SQL data types, JDBC type
codes, standard Java types, and Oracle extended types.

The SQL Data Types column lists the SQL types that exist in Oracle Database 12c
Release 1 (12.1). The JDBC Type Codes column lists data type codes supported by
the JDBC standard and defined in the java.sql.Types class or by Oracle in the
oracle.jdbc.OracleTypes class. For standard type codes, the codes are identical in
these two classes.

The Standard Java Types column lists standard types defined in the Java language.
The Oracle Extension Java Types column lists the oracle.sql.* Java types that
correspond to each SQL data type in the database. These are Oracle extensions that
let you retrieve all SQL data in the form of an oracle.sql.* Java type.

11-1

Note:

In general, the Oracle JDBC drivers are optimized to manipulate SQL data
using the standard JDBC types. In a few specialized cases, it may be
advantageous to use the Oracle extension classes that are available in the
oracle.sql package. But, Oracle strongly recommends to use the standard
JDBC types instead of Oracle extensions, whenever possible.

Table 11-1 Default Mappings Between SQL Types and Java Types

SQL Data Types JDBC Type Codes Standard Java Types Oracle Extension Java
Types

CHAR java.sql.Types.CHAR java.lang.String oracle.sql.CHAR

VARCHAR2 java.sql.Types.VARCHAR java.lang.String oracle.sql.CHAR

LONG java.sql.Types.LONGVARCHAR java.lang.String oracle.sql.CHAR

NUMBER java.sql.Types.NUMERIC java.math.BigDecimal oracle.sql.NUMBER

NUMBER java.sql.Types.DECIMAL java.math.BigDecimal oracle.sql.NUMBER

NUMBER java.sql.Types.BIT boolean oracle.sql.NUMBER

NUMBER java.sql.Types.TINYINT byte oracle.sql.NUMBER

NUMBER java.sql.Types.SMALLINT short oracle.sql.NUMBER

NUMBER java.sql.Types.INTEGER int oracle.sql.NUMBER

NUMBER java.sql.Types.BIGINT long oracle.sql.NUMBER

NUMBER java.sql.Types.REAL float oracle.sql.NUMBER

NUMBER java.sql.Types.FLOAT double oracle.sql.NUMBER

NUMBER java.sql.Types.DOUBLE double oracle.sql.NUMBER

RAW java.sql.Types.BINARY byte[] oracle.sql.RAW

RAW java.sql.Types.VARBINARY byte[] oracle.sql.RAW

LONGRAW java.sql.Types.LONGVARBINARY byte[] oracle.sql.RAW

DATE java.sql.Types.DATE java.sql.Date oracle.sql.DATE

DATE java.sql.Types.TIME java.sql.Time oracle.sql.DATE

TIMESTAMP java.sql.Types.TIMESTAMP javal.sql.Timestamp oracle.sql.TIMESTAMP

BLOB java.sql.Types.BLOB java.sql.Blob oracle.jdbc.OracleBlo
b1

CLOB java.sql.Types.CLOB java.sql.Clob oracle.jdbc.OracleClo
b2

user-defined
object

java.sql.Types.STRUCT java.sql.Struct oracle.jdbc.OracleStr
uct3

user-defined
reference

java.sql.Types.REF java.sql.Ref oracle.jdbc.OracleRef4

user-defined
collection

java.sql.Types.ARRAY java.sql.Array oracle.jdbc.OracleArr
ay5

Chapter 11
Data Type Mappings

11-2

Table 11-1 (Cont.) Default Mappings Between SQL Types and Java Types

SQL Data Types JDBC Type Codes Standard Java Types Oracle Extension Java
Types

ROWID java.sql.Types.ROWID java.sql.RowId oracle.sql.ROWID

NCLOB java.sql.Types.NCLOB java.sql.NClob oracle.sql.NCLOB

NCHAR java.sql.Types.NCHAR java.lang.String oracle.sql.CHAR

BFILE oracle.jdbc.OracleTypes.BFILE

(ORACLE EXTENSION)

NA oracle.sql.BFILE

REF CURSOR oracle.jdbc.OracleTypes.CURSO
R

(ORACLE EXTENSION)

java.sql.ResultSet oracle.jdbc.OracleRes
ultSet

TIMESTAMP oracle.jdbc.OracleTypes.TIMES
TAMP

(ORACLE EXTENSION)

java.sql.Timestamp oracle.sql.TIMESTAMP

TIMESTAMP WITH
TIME ZONE

oracle.jdbc.OracleTypes.TIMES
TAMPTZ

(ORACLE EXTENSION)

java.sql.Timestamp oracle.sql.TIMESTAMPT
Z

TIMESTAMP WITH
LOCAL TIME
ZONE

oracle.jdbc.OracleTypes.TIMES
TAMPLTZ

(ORACLE EXTENSION)

java.sql.Timestamp oracle.sql.TIMESTAMPL
TZ

1 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.BLOB class is deprecated and replaced with the
oracle.jdbc.OracleBlob interface.

2 Starting from Oracle Database 12c Release 1, the oracle.sql.CLOB class is deprecated and is replaced with the
oracle.jdbc.OracleClob interface.

3 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.STRUCT class is deprecated and replaced with the
oracle.jdbc.OracleStruct interface.

4 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.REF class is deprecated and replaced with the
oracle.jdbc.OracleRef interface.

5 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.ARRAY class is deprecated and replaced with the
oracle.jdbc.OracleArray interface.

Note:

For database versions, such as 8.1.7, which do not support the TIMESTAMP
data type, TIMESTAMP is mapped to DATE.

Related Topics

• Standard Types Versus Oracle Types

• Supported SQL-JDBC Data Type Mappings

Chapter 11
Data Type Mappings

11-3

11.1.2 Notes Regarding Mappings
This section provides further details regarding mappings for NUMBER and user-defined
types.

NUMBER Types

For the different type codes that an Oracle NUMBER value can correspond to, call the
getter routine that is appropriate for the size of the data for mapping to work properly.
For example, call getByte to get a Java tinyint value for an item x, where -128 < x <
128.

User-Defined Types

User-defined types, such as objects, object references, and collections, map by default
to weak Java types, such as java.sql.Struct, but alternatively can map to strongly
typed custom Java classes. Custom Java classes can implement one of two
interfaces:

• The standard java.sql.SQLData

• The Oracle-specific oracle.jdbc.OracleData

Related Topics

• About Mapping Oracle Objects

• About Creating and Using Custom Object Classes for Oracle Objects

11.2 Data Conversion Considerations
When JDBC programs retrieve SQL data into Java, you can use standard Java types,
or you can use types of the oracle.sql package. This section covers the following
topics:

• Standard Types Versus Oracle Types

• About Converting SQL NULL Data

• About Testing for NULLs

11.2.1 Standard Types Versus Oracle Types
The Oracle data types in oracle.sql store data in the same bit format as used by the
database. In versions of the Oracle JDBC drivers prior to Oracle Database 10g, the
Oracle data types were generally more efficient. Starting from Oracle Database 10g,
the JDBC drivers were substantially updated. As a result, in most cases the standard
Java types are preferred to the data types in oracle.sql.*. In particular,
java.lang.String is much more efficient than oracle.sql.CHAR.

In general, Oracle recommends that you use the Java standard types. The exceptions
to this are:

• Use the oracle.jdbc.OracleData rather than the java.sql.SqlData if the
OracleData functionality better suits your needs.

Chapter 11
Data Conversion Considerations

11-4

• Use oracle.sql.NUMBER rather than java.lang.Double if you need to retain the
exact values of floating point numbers. Oracle NUMBER is a decimal representation
and Java Double and Float are binary representations. Conversion from one
format to the other can result in slight variations in the actual value represented.
Additionally, the range of values that can be represented using the two formats is
different.

Use oracle.sql.NUMBER rather than java.math.BigDecimal when performance is
critical and you are not manipulating the values, just reading and writing them.

• Use oracle.sql.DATE or oracle.sql.TIMESTAMP if you are using a JDK version
earlier than JDK 6. Use java.sql.Date or java.sql.Timestamp if you are using
JDK 6 or a later version.

Note:

Due to a bug in all versions of Java prior to JDK 6, construction of
java.lang.Date and java.lang.Timestamp objects is slow, especially in
multithreaded environments. This bug is fixed in JDK 6.

• Use oracle.sql.CHAR only when you have data from some external source, which
has been represented in an Oracle character set encoding. In all other cases, you
should use java.lang.String.

• STRUCT, ARRAY, BLOB, CLOB, REF, and ROWID are all the implementation classes of
the corresponding JDBC standard interface types. So, there is no benefit of using
the Oracle extension types as they are identical to the JDBC standard types.

• BFILE, TIMESTAMPTZ, and TIMESTAMPLTZ have no representation in the JDBC
standard. You must use these Oracle extensions.

• In all other cases, you should use the standard JDBC type rather than the Oracle
extensions.

Note:

If you convert an oracle.sql data type to a Java standard data type, then
the benefits of using the oracle.sql data type are lost.

11.2.2 About Converting SQL NULL Data
Java represents a SQL NULL datum by the Java value null. Java data types fall into
two categories: primitive types, such as byte, int, and float, and object types, such
as class instances. The primitive types cannot represent null. Instead, they store null
as the value zero, as defined by the JDBC specification. This can lead to ambiguity
when you try to interpret your results.

In contrast, Java object types can represent null. The Java language defines an
object container type corresponding to every primitive type that can represent null.
The object container types must be used as the targets for SQL data to detect SQL
NULL without ambiguity.

Chapter 11
Data Conversion Considerations

11-5

11.2.3 About Testing for NULLs
You cannot use a relational operator to compare NULL values with each other or with
other values. For example, the following SELECT statement does not return any row
even if the COMMISSION_PCT column contains one or more NULL values.

PreparedStatement pstmt = conn.prepareStatement(
 "SELECT * FROM EMPLOYEES WHERE COMMISSION_PCT = ?");
pstmt.setNull(1, java.sql.Types.VARCHAR);

The next example shows how to compare values for equality when some return values
might be NULL. The following code returns all the FIRST_NAME from the EMPLOYEES table
that are NULL, if there is no value of 205 for COMM.

PreparedStatement pstmt = conn.prepareStatement("SELECT FIRST_NAME FROM EMPLOYEES
 WHERE COMMISSION_PCT =? OR ((COMM IS NULL) AND (? IS NULL))");
pstmt.setBigDecimal(1, new BigDecimal(205));
pstmt.setNull(2, java.sql.Types.VARCHAR);

11.3 Result Set and Statement Extensions
The Statement object returns a java.sql.ResultSet. If you want to apply only
standard JDBC methods to the object, then keep it as a ResultSet type. However, if
you want to use the Oracle extensions on the object, then you must cast it to
OracleResultSet. All of the Oracle Result Set extensions are in the
oracle.jdbc.OracleResultSet interface and all the Statement extensions are in the
oracle.jdbc.OracleStatement interface.

For example, assuming you have a standard Statement object stmt, do the following if
you want to use only standard JDBC ResultSet methods:

ResultSet rs = stmt.executeQuery("SELECT * FROM employees");

If you need the extended functionality provided by the Oracle extensions to JDBC, you
can select the results into a standard ResultSet variable and then cast that variable to
OracleResultSet later.

Key extensions to the result set and statement classes include the getOracleObject
and setOracleObject methods, used to access and manipulate data in oracle.sql.*
formats.

11.4 Comparison of Oracle get and set Methods to Standard
JDBC

This section describes get and set methods, particularly the JDBC standard
getObject and setObject methods and the Oracle-specific getOracleObject and
setOracleObject methods, and how to access data in oracle.sql.* format compared
with Java format.

You can use the standard getXXX methods for all Oracle SQL types.

This section covers the following topics:

• Standard getObject Method

Chapter 11
Result Set and Statement Extensions

11-6

• Oracle getOracleObject Method

• Summary of getObject and getOracleObject Return Types

• Other getXXX Methods

• Data Types For Returned Objects from getObject and getXXX

• The setObject and setOracleObject Methods

• Other setXXX Methods

Note:

You cannot qualify a column name with a table name and pass it as a
parameter to the getXXX method. For example:

ResultSet rset = stmt.executeQuery("SELECT employees.department_id,
department.department_id FROM employees, department");
rset.getInt("employees.department_id");

The getInt method in the preceding code will throw an exception. To
uniquely identify the columns in the getXXX method, you can either use
column index or specify column aliases in the query and use these aliases in
the getXXX method.

11.4.1 Standard getObject Method
The standard getObject method of a result set or callable statement has a return type
of java.lang.Object. The class of the object returned is based on its SQL type, as
follows:

• For SQL data types that are not Oracle-specific, the getObject method returns the
default Java type corresponding to the SQL type of the column, following the
mapping in the JDBC specification.

• For Oracle-specific data types, getObject returns an object of the appropriate
oracle.sql.* class, such as oracle.sql.ROWID.

• For Oracle database objects, getObject returns a Java object of the class
specified in your type map. Type maps specify a mapping from database named
types to Java classes. The getObject(parameter_index) method uses the default
type map of the connection. The getObject(parameter_index, map) enables you
to pass in a type map. If the type map does not provide a mapping for a particular
Oracle object, then getObject returns an oracle.sql.OracleStruct object.

11.4.2 Oracle getOracleObject Method
If you want to retrieve data from a result set or callable statement as an oracle.sql.*
object, then you must follow a special process. For an OracleResultSet object, you
must cast the Result Set to oracle.jdbc.OracleResultSet and then call
getOracleObject instead of getObject. The same applies to CallableStatement and
oracle.jdbc.OracleCallableStatement.

The return type of getOracleObject is oracle.sql.Datum. The actual returned object
is an instance of the appropriate oracle.sql.* class. The method signature is:

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

11-7

public oracle.sql.Datum getOracleObject(int parameter_index)

When you retrieve data into a Datum variable, you can use the standard Java
instanceof operator to determine which oracle.sql.* type it really is.

Example: Using getOracleObject with a Result Set

The following example creates a table that contains a column of CHAR data and a
column containing a BFILE locator. A SELECT statement retrieves the contents of the
table as a result set. The getOracleObject then retrieves the CHAR data into the
char_datum variable and the BFILE locator into the bfile_datum variable. Note that
because getOracleObject returns a Datum object, the return values must be cast to
CHAR and BFILE, respectively.

stmt.execute ("CREATE TABLE bfile_table (x VARCHAR2 (30), b BFILE)");
stmt.execute
 ("INSERT INTO bfile_table VALUES ('one', BFILENAME ('TEST_DIR', 'file1'))");

ResultSet rset = stmt.executeQuery ("SELECT * FROM bfile_table");
while (rset.next ())
{
 CHAR char_datum = (CHAR) ((OracleResultSet)rset).getOracleObject (1);
 BFILE bfile_datum = (BFILE) ((OracleResultSet)rset).getOracleObject (2);
 ...
}

Example: Using getOracleObject in a Callable Statement

The following example prepares a call to the procedure myGetDate, which associates a
character string with a date. The program passes "HR" to the prepared call and
registers the DATE type as an output parameter. After the call is run, getOracleObject
retrieves the date associated with "HR". Note that because getOracleObject returns a
Datum object, the results are cast to DATE.

OracleCallableStatement cstmt = (OracleCallableStatement)conn.prepareCall
 ("begin myGetDate (?, ?); end;");

cstmt.setString (1, "HR");
cstmt.registerOutParameter (2, Types.DATE);
cstmt.execute ();

DATE date = (DATE) ((OracleCallableStatement)cstmt).getOracleObject (2);
...

11.4.3 Summary of getObject and getOracleObject Return Types
The following table lists the underlying return types for the getObject and
getOracleObject methods for each Oracle SQL type.

Keep in mind the following when you use these methods:

• getObject always returns data into a java.lang.Object instance

• getOracleObject always returns data into an oracle.sql.Datum instance

You must cast the returned object to use any special functionality.

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

11-8

Table 11-2 getObject and getOracleObject Return Types

Oracle SQL Type getObject Underlying Return Type getOracleObject Underlying
Return Type

CHAR String oracle.sql.CHAR

VARCHAR2 String oracle.sql.CHAR

NCHAR String oracle.sql.CHAR

LONG String oracle.sql.CHAR

NUMBER java.math.BigDecimal oracle.sql.NUMBER

RAW byte[] oracle.sql.RAW

LONGRAW byte[] oracle.sql.RAW

DATE java.sql.Date oracle.sql.DATE

TIMESTAMP java.sql.Timestamp1 oracle.sql.TIMESTAMP

TIMESTAMP WITH
TIME ZONE

oracle.sql.TIMESTAMPTZ oracle.sql.TIMESTAMPTZ

TIMESTAMP WITH
LOCAL TIME
ZONE

oracle.sql.TIMESTAMPLTZ oracle.sql.TIMESTAMPLTZ

BINARY_FLOAT java.lang.Float oracle.sql.BINARY_FLOAT

BINARY_DOUBLE java.lang.Double oracle.sql.BINARY_DOUBLE

INTERVAL DAY
TO SECOND

oracle.sql.INTERVALDS oracle.sql.INTERVALDS

INTERVAL YEAR
TO MONTH

oracle.sql.INTERVALYM oracle.sql.INTERVALYM

ROWID oracle.sql.ROWID oracle.sql.ROWID

REF CURSOR java.sql.ResultSet (not supported)

BLOB oracle.jdbc.OracleBlob2 oracle.jdbc.OracleBlob

CLOB oracle.jdbc.OracleClob3 oracle.jdbc.OracleClob

NCLOB java.sql.NClob oracle.sql.NCLOB

BFILE oracle.sql.BFILE oracle.sql.BFILE

Oracle object class specified in type map

or oracle.sql.OracleStruct4 (if
no type map entry)

oracle.jdbc.OracleStruct

Oracle object
reference

oracle.jdbc.OracleRef5 oracle.jdbc.OracleRef

collection (varray
or nested table)

oracle.jdbc.OracleArray6 oracle.sql.ARRAY

1 ResultSet.getObject returns java.sql.Timestamp only if the
oracle.jdbc.J2EE13Compliant connection property is set to TRUE, else the method returns
oracle.sql.TIMESTAMP.

2 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.BLOB class is deprecated and
replaced with the oracle.jdbc.OracleBlob interface.

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

11-9

3 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.CLOB class is deprecated and
replaced with the oracle.jdbc.OracleClob interface.

4 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.STRUCT class is deprecated
and replaced with the oracle.jdbc.OracleStruct interface.

5 Starting from Oracle Database 12c Release 1, the oracle.sql.REF class is deprecated and is
replaced with the oracle.jdbc.OracleRef interface.

6 Starting from Oracle Database 12c Release 1, the oracle.sql.ARRAY class is deprecated and
replaced with the oracle.jdbc.OracleArray interface.

Note:

The ResultSet.getObject method returns java.sql.Timestamp for the
TIMESTAMP SQL type, only when the connection property
oracle.jdbc.J2EE13Compliant is set to TRUE. This property has to be set
when the connection is obtained. If this connection property is not set or if it
is set after the connection is obtained, then the ResultSet.getObject
method returns oracle.sql.TIMESTAMP for the TIMESTAMP SQL type.

The oracle.jdbc.J2EE13Compliant connection property can also be set
without changing the code in the following ways:

• Including the ojdbc6dms.jar or ojdbc7dms.jar files in the CLASSPATH.
These files set oracle.jdbc.J2EE13Compliant to TRUE by default. These
are specific to the Oracle Application Server release and are not
available as part of the general JDBC release. They are located
in $ORACLE_HOME/jdbc/lib.

• Setting the system property by calling the java command with the flag -
Doracle.jdbc.J2EE13Compliant=true. For example,

java -Doracle.jdbc.J2EE13Compliant=true ...

When the J2EE13Compliant is set to TRUE the action is as in Table B-3 of the
JDBC specification.

Related Topics

• Supported SQL-JDBC Data Type Mappings

11.4.4 Other getXXX Methods
Standard JDBC provides a getXXX for each standard Java type, such as getByte,
getInt, getFloat, and so on. Each of these returns exactly what the method name
implies.

In addition, the OracleResultSet and OracleCallableStatement interfaces provide a
full complement of getXXX methods corresponding to all the oracle.sql.* types. Each
getXXX method returns an oracle.sql.XXX object. For example, getROWID returns an
oracle.sql.ROWID object.

There is no performance advantage in using the specific getXXX methods. However,
they do save you the trouble of casting, because the return type is specific to the
object being returned.

This section covers the following topics:

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

11-10

• Return Types of getXXX Methods

• Special Notes about getXXX Methods

11.4.4.1 Return Types of getXXX Methods
Refer to the JDBC Javadoc to know the return types for each getXXX method and also
which are Oracle extensions under Java Development Kit (JDK) 6. You must cast the
returned object to OracleResultSet or OracleCallableStatement to use methods that
are Oracle extensions.

11.4.4.2 Special Notes about getXXX Methods
This section provides additional details about some getXXX methods.

getBigDecimal

JDBC 2.0 simplified method signatures for the getBigDecimal method. The previous
input signatures were:

(int columnIndex, int scale) or (String columnName, int scale)

The simplified input signature is:

(int columnIndex) or (String columnName)

The scale parameter, used to specify the number of digits to the right of the decimal,
is no longer necessary. The Oracle JDBC drivers retrieve numeric values with full
precision.

getBoolean

Because there is no BOOLEAN database type, when you use getBoolean a data type
conversion always occurs. The getBoolean method is supported only for numeric
columns. When applied to these columns, getBoolean interprets any zero value as
false and any other value as true. When applied to any other sort of column,
getBoolean raises the exception java.lang.NumberFormatException.

11.4.5 Data Types For Returned Objects from getObject and getXXX
The return type of getObject is java.lang.Object. The returned value is an instance
of a subclass of java.lang.Object. Similarly, the return type of getOracleObject is
oracle.sql.Datum, and the class of the returned value is a subclass of
oracle.sql.Datum. You typically cast the returned object to the appropriate class to
use particular methods and functionality of that class.

In addition, you have the option of using a specific getXXX method instead of the
generic getObject or getOracleObject methods. The getXXX methods enable you to
avoid casting, because the return type of getXXX corresponds to the type of object
returned. For example, the return type of getCLOB is oracle.sql.CLOB, as opposed to
java.lang.Object.

Example of Casting Return Values

This example assumes that you have fetched data of the NUMBER type as the first
column of a result set. Because you want to manipulate the NUMBER data without losing

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

11-11

precision, cast your result set to OracleResultSet and use getOracleObject to return
the NUMBER data in oracle.sql.* format. If you do not cast your result set, then you
have to use getObject, which returns your numeric data into a Java Float and loses
some of the precision of your SQL data.

The getOracleObject method returns an oracle.sql.NUMBER object into an
oracle.sql.Datum return variable unless you cast the output. Cast the
getOracleObject output to oracle.sql.NUMBER if you want to use a NUMBER return
variable and any of the special functionality of that class.

NUMBER x = (NUMBER)ors.getOracleObject(1);

11.4.6 The setObject and setOracleObject Methods
Just as there is a standard getObject and Oracle-specific getOracleObject in result
sets and callable statements, there are also standard setObject and Oracle-specific
setOracleObject methods in OraclePreparedStatement and
OracleCallableStatement. The setOracleObject methods take oracle.sql.* input
parameters.

To bind standard Java types to a prepared statement or callable statement, use the
setObject method, which takes a java.lang.Object as input. The setObject method
does support a few of the oracle.sql.* types. However, the method has been
implemented so that you can enter instances of the oracle.sql.* classes that
correspond to the following JDBC standard types: Blob, Clob, Struct, Ref, and Array.

To bind oracle.sql.* types to a prepared statement or callable statement, use the
setOracleObject method, which takes a subclass of oracle.sql.Datum as input. To
use setOracleObject, you must cast your prepared statement or callable statement to
OraclePreparedStatement or OracleCallableStatement.

Example of Using setObject and setOracleObject

For a prepared statement, the setOracleObject method binds the oracle.sql.CHAR
data represented by the charVal variable to the prepared statement. To bind the
oracle.sql.* data, the prepared statement must be cast to
OraclePreparedStatement. Similarly, the setObject method binds the Java String
data represented by the variable strVal.

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
((OraclePreparedStatement)ps).setOracleObject(1,charVal);
ps.setObject(2,strVal);

11.4.7 Other setXXX Methods
As with the getXXX methods, there are several specific setXXX methods. Standard
setXXX methods are provided for binding standard Java types, and Oracle-specific
setXXX methods are provided for binding Oracle-specific types.

Similarly, there are two forms of the setNull method:

• void setNull(int parameterIndex, int sqlType)

This is specified in the standard java.sql.PreparedStatement interface. This
signature takes a parameter index and a SQL type code defined by the
java.sql.Types or oracle.jdbc.OracleTypes class. Use this signature to set an
object other than a REF, ARRAY, or STRUCT to NULL.

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

11-12

• void setNull(int parameterIndex, int sqlType, String sql_type_name)

With JDBC 2.0, this signature is also specified in the standard
java.sql.PreparedStatement interface. This method takes a SQL type name in
addition to a parameter index and a SQL type code. Use this method when the
SQL type code is java.sql.Types.REF, ARRAY, or STRUCT. If the type code is other
than REF, ARRAY, or STRUCT, then the given SQL type name is ignored.

Similarly, the registerOutParameter method has a signature for use with REF, ARRAY,
or STRUCT data:

void registerOutParameter
 (int parameterIndex, int sqlType, String sql_type_name)

Binding Oracle-specific types using the appropriate setXXX methods, instead of the
methods used for binding standard Java types, may offer some performance
advantage.

This section covers the following topics:

• Input Data Binding

• Method setFixedCHAR for Binding CHAR Data into WHERE Clauses

11.4.7.1 Input Data Binding
There are three way to bind data for input:

• Direct binding where the data itself is placed in a bind buffer

• Stream binding where the data is streamed

• LOB binding where a temporary lob is created, the data placed in the LOB using
the LOB APIs, and the bytes of the LOB locator are placed in the bind buffer

The three kinds of binding have some differences in performance and have an impact
on batching. Direct binding is fast and batching is fine. Stream binding is slower, may
require multiple round trips, and turns batching off. LOB binding is very slow and
requires many round trips. Batching works, but might be a bad idea. They also have
different size limits, depending on the type of the SQL statement.

For SQL parameters, the length of standard parameter types, such as RAW and
VARCHAR2, is fixed by the size of the target column. For PL/SQL parameters, the size is
limited to a fixed number of bytes, which is 32766.

In Oracle Database 10g release 2, certain changes were made to the setString,
setCharacterStream, setAsciiStream, setBytes, and setBinaryStream methods of
PreparedStatement. The original behavior of these APIs were:

• setString: Direct bind of characters

• setCharacterStream: Stream bind of characters

• setAsciiStream: Stream bind of bytes

• setBytes: Direct bind of bytes

• setBinaryStream: Stream bind of bytes

Starting from Oracle Database 10g Release 2, automatic switching between binding
modes, based on the data size and on the type of the SQL statement is provided.

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

11-13

setBytes and setBinaryStream

For SQL, direct bind is used for size up to 2000 and stream bind for larger.

For PL/SQL direct bind is used for size up to 32766 and LOB bind is used for larger.

setString, setCharacterStream, and setAsciiStream

For SQL, direct bind is used up to 32766 Java characters and stream bind is used for
larger. This is independent of character set.

For PL/SQL, you must be careful about the byte size of the character data in the
database character set or the national character set depending on the setting of the
form of use parameter. Direct bind is used for data where the byte length is less than
32766 and LOB bind is used for larger.

For fixed length character sets, multiply the length of the Java character data by the
fixed character size in bytes and compare that to the restrictive values. For variable
length character sets, there are three cases based on the Java character length, as
follows:

• If character length is less than 32766 divided by the maximum character size, then
direct bind is used.

• If character length is greater than 32766 divided by the minimum character size,
then LOB bind is used.

• If character length is in between and if the actual length of the converted bytes is
less than 32766, then direct bind is used, else LOB bind is used.

Note:

When a PL/SQL procedure is embedded in a SQL statement, the binding
action is different.

The server-side internal driver has the following additional limitations:

• setString, setCharacterStream, and setASCIIStream APIs are not supported for
SQL CLOB columns when the data size in characters is over 32767 bytes

• setBytes and setBinaryStream APIs are not supported for SQL BLOB columns
when the data size is over 32767 bytes

Note:

Do not use these APIs with the server-side internal driver, without careful
checking of the data size in client code.

Related Topics

• Data Interface for LOBs

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

11-14

See Also:

JDBC Release Notes for further discussion and possible workarounds

11.4.7.2 Method setFixedCHAR for Binding CHAR Data into WHERE Clauses
CHAR data in the database is padded to the column width. This leads to a limitation in
using the setCHAR method to bind character data into the WHERE clause of a SELECT
statement. The character data in the WHERE clause must also be padded to the column
width to produce a match in the SELECT statement. This is especially troublesome if
you do not know the column width.

To remedy this, Oracle has added the setFixedCHAR method to the
OraclePreparedStatement class. This method runs a non-padded comparison.

Note:

• Remember to cast your prepared statement object to
OraclePreparedStatement to use the setFixedCHAR method.

• There is no need to use setFixedCHAR for an INSERT statement. The
database always automatically pads the data to the column width as it
inserts it.

Example

The following example demonstrates the difference between the setCHAR and
setFixedCHAR methods.

/* Schema is :
 create table my_table (col1 char(10));
 insert into my_table values ('JDBC');
*/
 PreparedStatement pstmt = conn.prepareStatement
 ("select count(*) from my_table where col1 = ?");

 pstmt.setString (1, "JDBC"); // Set the Bind Value
 runQuery (pstmt); // This will print " No of rows are 0"

 CHAR ch = new CHAR("JDBC ", null);
 ((OraclePreparedStatement)pstmt).setCHAR(1, ch); // Pad it to 10 bytes
 runQuery (pstmt); // This will print "No of rows are 1"

 ((OraclePreparedStatement)pstmt).setFixedCHAR(1, "JDBC");
 runQuery (pstmt); // This will print "No of rows are 1"

 void runQuery (PreparedStatement ps)
 {
 // Run the Query
 ResultSet rs = pstmt.executeQuery ();

 while (rs.next())
 System.out.println("No of rows are " + rs.getInt(1));

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

11-15

 rs.close();
 rs = null;
 }

11.5 Using Result Set Metadata Extensions
The oracle.jdbc.OracleResultSetMetaData interface is JDBC 2.0-compliant but
does not implement the getSchemaName and getTableName methods because Oracle
Database does not make this feasible.

The following code snippet uses several of the methods in the
OracleResultSetMetadata interface to retrieve the number of columns from the
EMPLOYEES table and the numerical type and SQL type name of each column:

DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rset = dbmd.getTables("", "HR", "EMPLOYEES", null);

 while (rset.next())
 {
 OracleResultSetMetaData orsmd = ((OracleResultSet)rset).getMetaData();
 int numColumns = orsmd.getColumnCount();
 System.out.println("Num of columns = " + numColumns);

 for (int i=0; i<numColumns; i++)
 {
 System.out.print ("Column Name=" + orsmd.getColumnName (i+1));
 System.out.print (" Type=" + orsmd.getColumnType (i + 1));
 System.out.println (" Type Name=" + orsmd.getColumnTypeName (i + 1));
 }
}

The program returns the following output:

Num of columns = 5
Column Name=TABLE_CAT Type=12 Type Name=VARCHAR2
Column Name=TABLE_SCHEM Type=12 Type Name=VARCHAR2
Column Name=TABLE_NAME Type=12 Type Name=VARCHAR2
Column Name=TABLE_TYPE Type=12 Type Name=VARCHAR2
Column Name=TABLE_REMARKS Type=12 Type Name=VARCHAR2

11.6 About Using SQL CALL and CALL INTO Statements
You can use the CALL statement to execute a routine from within SQL in the following
two ways:

Note:

A routine is a procedure or a function that is standalone or is defined within a
type or package. You must have EXECUTE privilege on the standalone routine
or on the type or package in which the routine is defined.

• By issuing a call to the routine itself by name or by using the routine_clause

• By using an object_access_expression inside the type of an expression

Chapter 11
Using Result Set Metadata Extensions

11-16

You can specify one or more arguments to the routine, if the routine takes arguments.
You can use positional, named, or mixed notation for argument.

CALL INTO Statement

The INTO clause applies only to calls to functions. You can use the following types of
variables with this clause:

• Host variable

• Indicator variable

See Also:

Oracle Database SQL Language Reference for more information

PL/SQL Blocks

The basic unit in PL/SQL is a block. All PL/SQL programs are made up of blocks,
which can be nested within each other. A PL/SQL block has three parts: a declarative
part, an executable part, and an exception-handling part. You get the following
advantages by using PL/SQL blocks in your application:

• Better performance

• Higher productivity

• Full portability

• Tight integration with Oracle

• Tight security

Chapter 11
About Using SQL CALL and CALL INTO Statements

11-17

12
Java Streams in JDBC

This chapter describes how the Oracle Java Database Connectivity (JDBC) drivers
handle Java streams for several data types. Data streams enable you to read LONG
column data of up to 2 gigabytes (GB).

This chapter covers the following topics:

• Overview of Java Streams

• About Streaming LONG or LONG RAW Columns

• About Streaming CHAR_ VARCHAR_ or RAW Columns

• About Streaming LOBs and External Files

• Relation Between Data Streaming and Multiple Columns

• Relation Between Streaming and Row Prefetching

• Closing a Stream

• Notes and Precautions on Streams

12.1 Overview of Java Streams
Oracle JDBC drivers support the manipulation of data streams in either direction
between server and client. The drivers support all stream conversions: binary, ASCII,
and Unicode. Following is a brief description of each type of stream:

• Binary

Used for RAW bytes of data, and corresponds to the getBinaryStream method

• ASCII

Used for ASCII bytes in ISO-Latin-1 encoding, and corresponds to the
getAsciiStream method

• Unicode

Used for Unicode bytes with the UTF-16 encoding, and corresponds to the
getUnicodeStream method

The getBinaryStream, getAsciiStream, and getUnicodeStream methods return the
bytes of data in an InputStream object.

Note:

Starting from Oracle Database 12c Release 1 (12.1), the
CONNECTION_PROPERTY_STREAM_CHUNK_SIZE is deprecated and the driver
does not use it internally for setting the stream chunk size.

12-1

See Also:

Working with LOBs and BFILEs

12.2 About Streaming LONG or LONG RAW Columns
This section covers the following topics:

• Overview of Streaming LONG or LONG RAW Columns

• LONG RAW Data Conversions

• LONG Data Conversions

• Examples:Streaming LONG RAW Data

• About Avoiding Streaming for LONG or LONG RAW

12.2.1 Overview of Streaming LONG or LONG RAW Columns
When a query selects one or more LONG or LONG RAW columns, the JDBC driver
transfers these columns to the client in streaming mode. In streaming mode, the JDBC
driver does not read the column data from the network for LONG or LONG RAW columns,
until required. The column data remains in the network communications channel until
your code calls a getXXX method to read the column data. Even after the call, the
column data is read only as needed to populate return value from the getXXX call.
Because the column data remains in the communications channel, the streaming
mode interferes with all other use of the connection. Any use of the connection, other
than reading the column data, will discard the column data from the channel. While the
streaming mode makes efficient use of memory and minimizes network round trips, it
interferes with many other database operations.

Note:

Oracle recommends avoiding LONG and LONG RAW columns. Use LOB instead.

To access the data in a LONG column, you can get the column as a Java InputStream
object and use the read method of the InputStream object. As an alternative, you can
get the data as a String or byte array. In this case, the driver will do the streaming for
you.

You can get LONG and LONG RAW data with any of the three stream types. The driver
performs conversions for you, depending on the character set of the database and the
driver.

Chapter 12
About Streaming LONG or LONG RAW Columns

12-2

Note:

Do not create tables with LONG columns. Use large object (LOB) columns,
CLOB, NCLOB, and BLOB, instead. LONG columns are supported only for
backward compatibility. Oracle recommends that you convert existing LONG
columns to LOB columns. LOB columns are subject to far fewer restrictions
than LONG columns.

12.2.2 LONG RAW Data Conversions
A call to getBinaryStream returns RAW data. A call to getAsciiStream converts the RAW
data to hexadecimal and returns the ASCII representation. A call to getUnicodeStream
converts the RAW data to hexadecimal and returns the Unicode characters.

12.2.3 LONG Data Conversions
When you get LONG data with getAsciiStream, the drivers assume that the underlying
data in the database uses an US7ASCII or WE8ISO8859P1 character set. If the
assumption is true, then the drivers return bytes corresponding to ASCII characters. If
the database is not using an US7ASCII or WE8ISO8859P1 character set, a call to
getAsciiStream returns meaningless information.

When you get LONG data with getUnicodeStream, you get a stream of Unicode
characters in the UTF-16 encoding. This applies to all underlying database character
sets that Oracle supports.

When you get LONG data with getBinaryStream, there are two possible cases:

• If the driver is JDBC OCI and the client character set is not US7ASCII or
WE8ISO8859P1, then a call to getBinaryStream returns UTF-8. If the client character
set is US7ASCII or WE8ISO8859P1, then the call returns a US7ASCII stream of bytes.

• If the driver is JDBC Thin and the database character set is not US7ASCII or
WE8ISO8859P1, then a call to getBinaryStream returns UTF-8. If the server-side
character set is US7ASCII or WE8ISO8859P1, then the call returns a US7ASCII
stream of bytes.

Note:

Receiving LONG or LONG RAW columns as a stream requires you to pay special
attention to the order in which you retrieve columns from the database.

The following table summarizes LONG and LONG RAW data conversions for each stream
type.

Chapter 12
About Streaming LONG or LONG RAW Columns

12-3

Table 12-1 LONG and LONG RAW Data Conversions

Data
type

BinaryStream AsciiStream UnicodeStrea
m

LONG Bytes representing characters in
Unicode UTF-8. The bytes can
represent characters in US7ASCII
or WE8ISO8859P1 if the database
character set is US7ASCII or
WE8ISO8859P1.

Bytes representing
characters in ISO-Latin-1
(WE8ISO8859P1) encoding

Bytes
representing
characters in
Unicode
UTF-16
encoding

LONG
RAW

unchanged data ASCII representation of
hexadecimal bytes

Unicode
representation
of hexadecimal
bytes

Related Topics

• Globalization Support

• Relation Between Data Streaming and Multiple Columns

12.2.4 Examples:Streaming LONG RAW Data
One of the features of a getXXXStream method is that it enables you to fetch data
incrementally. In contrast, getBytes fetches all the data in one call. This section
contains two examples of getting a stream of binary data. The first version uses the
getBinaryStream method to obtain LONG RAW data, and the second version uses the
getBytes method.

Getting a LONG RAW Data Column with getBinaryStream

This example writes the contents of a LONG RAW column to a file on the local file system.
In this case, the driver fetches the data incrementally.

The following code creates the table that stores a column of LONG RAW data associated
with the name LESLIE:

-- SQL code:
create table streamexample (NAME varchar2 (256), GIFDATA long raw);
insert into streamexample values ('LESLIE', '00010203040506070809');

The following Java code snippet writes the data from the LONG RAW column into a file
called leslie.gif:

ResultSet rset = stmt.executeQuery
 ("select GIFDATA from streamexample where NAME='LESLIE'");

// get first row
if (rset.next())
{
 // Get the GIF data as a stream from Oracle to the client
 InputStream gif_data = rset.getBinaryStream (1);
 try
 {
 FileOutputStream file = null;
 file = new FileOutputStream ("leslie.gif");

Chapter 12
About Streaming LONG or LONG RAW Columns

12-4

 int chunk;
 while ((chunk = gif_data.read()) != -1)
 file.write(chunk);
 }
 catch (Exception e)
 {
 String err = e.toString();
 System.out.println(err);
 }
 finally
 {
 if file != null()
 file.close();
 }
}

In this example, the InputStream object returned by the call to getBinaryStream reads
the data directly from the database connection.

Getting a LONG RAW Data Column with getBytes

This example gets the content of the GIFDATA column with getBytes instead of
getBinaryStream. In this case, the driver fetches all the data in one call and stores it in
a byte array. The code snippet is as follows:

ResultSet rset2 = stmt.executeQuery
 ("select GIFDATA from streamexample where NAME='LESLIE'");

// get first row
if (rset2.next())
{
 // Get the GIF data as a stream from Oracle to the client
 byte[] bytes = rset2.getBytes(1);
 try
 {
 FileOutputStream file = null;
 file = new FileOutputStream ("leslie2.gif");
 file.write(bytes);
 }
 catch (Exception e)
 {
 String err = e.toString();
 System.out.println(err);
 }
 finally
 {
 if file != null()
 file.close();
 }
}

Because a LONG RAW column can contain up to 2 gigabytes of data, the getBytes
example can use much more memory than the getBinaryStream example. Use
streams if you do not know the maximum size of the data in your LONG or LONG RAW
columns.

Chapter 12
About Streaming LONG or LONG RAW Columns

12-5

12.2.5 About Avoiding Streaming for LONG or LONG RAW

Note:

Starting from Oracle Database 12c Release 1 (12.1), this method is
deprecated.

The JDBC driver automatically streams any LONG and LONG RAW columns. However,
there may be situations where you want to avoid data streaming. For example, if you
have a very small LONG column, then you may want to avoid returning the data
incrementally and, instead, return the data in one call.

To avoid streaming, use the defineColumnType method to redefine the type of the
LONG column. For example, if you redefine the LONG or LONG RAW column as VARCHAR or
VARBINARY type, then the driver will not automatically stream the data.

If you redefine column types with defineColumnType, then you must declare the types
of the columns in the query. If you do not declare the types of the columns, then
executeQuery will fail. In addition, you must cast the Statement object to
oracle.jdbc.OracleStatement.

As an added benefit, using defineColumnType saves the OCI driver a database round-
trip when running the query. Without defineColumnType, these JDBC drivers must
request the data types of the column types. The JDBC Thin driver derives no benefit
from defineColumnType, because it always uses the minimum number of round-trips.

Using the example from the previous section, the Statement object stmt is cast to
OracleStatement and the column containing LONG RAW data is redefined to be of the
type VARBINARAY. The data is not streamed. Instead, it is returned in a byte array. The
code snippet is as follows:

//cast the statement stmt to an OracleStatement
oracle.jdbc.OracleStatement ostmt =
 (oracle.jdbc.OracleStatement)stmt;

//redefine the LONG column at index position 1 to VARBINARY
ostmt.defineColumnType(1, Types.VARBINARY);

// Do a query to get the images named 'LESLIE'
ResultSet rset = ostmt.executeQuery
 ("select GIFDATA from streamexample where NAME='LESLIE'");

// The data is not streamed here
rset.next();
byte [] bytes = rset.getBytes(1);

Related Topics

• Deprecated Features

Chapter 12
About Streaming LONG or LONG RAW Columns

12-6

12.3 About Streaming CHAR, VARCHAR, or RAW Columns

Note:

Starting from Oracle Database 12c Release 1 (12.1), this method is
deprecated..

If you use the defineColumnType Oracle extension to redefine a CHAR, VARCHAR, or RAW
column as a LONGVARCHAR or LONGVARBINARY, then you can get the column as a stream.
The program will behave as if the column were actually of type LONG or LONG RAW. Note
that there is not much point to this, because these columns are usually short.

If you try to get a CHAR, VARCHAR, or RAW column as a data stream without redefining the
column type, then the JDBC driver will return a Java InputStream, but no real
streaming occurs. In the case of these data types, the JDBC driver fully fetches the
data into an in-memory buffer during a call to the executeQuery method or the next
method. The getXXXStream entry points return a stream that reads data from this
buffer.

Related Topics

• Deprecated Features

12.4 About Streaming LOBs and External Files
The term large object (LOB) refers to a data item that is too large to be stored directly
in a database table. Instead, a locator is stored in the database table, which points to
the location of the actual data. External files are managed similarly. The JDBC drivers
can support the following types through the use of streams:

• Binary large object (BLOB)

For unstructured binary data

• Character large object (CLOB)

For character data

• National Character large object (NCLOB)

For national character data

• Binary file (BFILE)

For external files

LOBs and BFILEs behave differently from the other types of streaming data described
in this chapter. Instead of storing the actual data in the table, a locator is stored. The
actual data can be manipulated using this locator, including reading and writing the
data as a stream. Even when streaming, only the chunk of data (defined by a size) is
streamed across the network. By contrast, when streaming a LONG or LONG RAW, the
entire data is streamed across the network.

Chapter 12
About Streaming CHAR, VARCHAR, or RAW Columns

12-7

Streaming BLOBs, CLOBs, and NCLOBs

When a query fetches one or more BLOB, CLOB, or NCLOB columns, the JDBC driver
transfers the data to the client. This data can be accessed as a stream. To manipulate
BLOB, CLOB, or NCLOB data from JDBC, use methods in the Oracle extension classes
oracle.sql.BLOB, oracle.sql.CLOB and oracle.sql.NCLOB. These classes provide
specific functionality, such as reading from the BLOB, CLOB, or NCLOB into an input
stream, writing from an output stream into a BLOB, CLOB, or NCLOB, determining the
length of a BLOB, CLOB, or NCLOB, and closing a BLOB, CLOB, or NCLOB.

Note:

Starting from Oracle Database 12c Release 1 (12.1), the concrete classes in
the oracle.sql package are deprecated and replaced with the interfaces in
the oracle.jdbc package. Oracle recommends you to use the methods
available in the java.sql package, where possible, for standard compatibility
and methods available in the oracle.jdbc package for Oracle specific
extensions. Refer to MoS Note 1364193.1 for more information about these
interfaces.

See Also:

"Data Interface for LOBs"

Streaming BFILEs

An external file, or BFILE, is used to store a locator to a file outside the database. The
file can be stored somewhere on the file system of the data server. The locator points
to the actual location of the file.

When a query fetches one or more BFILE columns, the JDBC driver transfers the file to
the client as required. The data can be accessed as a stream To manipulate BFILE
data from JDBC, use methods in the Oracle extension class oracle.sql.BFILE. This
class provides specific functionality, such as reading from the BFILE into an input
stream, writing from an output stream into a BFILE, determining the length of a BFILE,
and closing a BFILE.

12.5 Relation Between Data Streaming and Multiple
Columns

If a query fetches multiple columns and one of the columns contains a data stream,
then the contents of the columns following the stream column are not available until
the stream has been read, and the stream column is no longer available once any
following column is read. Any attempt to read a column beyond a streaming column
closes the streaming column.

Chapter 12
Relation Between Data Streaming and Multiple Columns

12-8

Streaming Example with Multiple Columns

Consider the following code:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
 //get the date data
 java.sql.Date date = rset.getDate(1);

 // get the streaming data
 InputStream is = rset.getAsciiStream(2);

 // Open a file to store the gif data
 FileOutputStream file = new FileOutputStream ("ascii.dat");

 // Loop, reading from the ascii stream and
 // write to the file
 int chunk;
 while ((chunk = is.read ()) != -1)
 file.write(chunk);
 // Close the file
 file.close();

 //get the number column data
 int n = rset.getInt(3);
}

The incoming data for each row has the following shape:

<a date><the characters of the long column><a number>

As you process each row of the result set, you must complete any processing of the
stream column before reading the number column.

Bypassing Streaming Data Columns

There may be situations where you want to avoid reading a column that contains
streaming data. If you do not want to read such data, then call the close method of the
stream object. This method discards the stream data and enables the driver to
continue reading data from all the columns that contain non-streaming data and follow
the column containing streaming data. Even though you are intentionally discarding
the stream, it is a good programming practice to retrieve the columns in the same
order as in the SELECT statement.

In the following example, the stream data in the LONG column is discarded and the data
from only the DATE and NUMBER column is recovered:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");

while rset.next()
{
 //get the date
 java.sql.Date date = rset.getDate(1);

 // access the stream data and discard it with close()
 InputStream is = rset.getAsciiStream(2);
 is.close();

Chapter 12
Relation Between Data Streaming and Multiple Columns

12-9

 // get the number column data
 int n = rset.getInt(3);
}

Related Topics

• About Streaming Data Precautions

• About Streaming LOBs and External Files

12.6 Closing a Stream
You can discard the data from a stream at any time by calling the close method. It is a
good programming practice to close the stream when you no longer need it. For
example:

 ...
 InputStream is = rset.getAsciiStream(2);
 is.close();

Note:

Closing a stream has little performance effect on a LONG or LONG RAW
column. All of the data still move across the network and the driver must read
the bits from the network.

Related Topics

• Relation Between Data Streaming and Multiple Columns

• About Streaming Data Precautions

12.7 Notes and Precautions on Streams
This section discusses several cautionary issues regarding the use of streams:

• About Streaming Data Precautions

• About Using Streams to Avoid Limits on setBytes and setString

• Relation Between Streaming and Row Prefetching

12.7.1 About Streaming Data Precautions
This section describes some of the precautions you must take to ensure that you do
not accidentally discard or lose your stream data. The drivers automatically discard
stream data if you perform any JDBC operation that communicates with the database,
other than reading the current stream. Two common precautions are:

• Use the stream data after you access it.

To recover the data from a column containing a data stream, it is not enough to
fetch the column. You must immediately process the contents of the column.
Otherwise, the contents will be discarded when you fetch the next column.

Chapter 12
Closing a Stream

12-10

• Call the stream column in the same order as in the SELECT statement.

If your query fetches multiple columns, the database sends each row as a set of
bytes representing the columns in the SELECT order. If one of the columns contains
stream data, then the database sends the entire data stream before proceeding to
the next column.

If you do not use the order as in the SELECT statement to access data, then you
can lose the stream data. That is, if you bypass the stream data column and
access data in a column that follows it, then the stream data will be lost. For
example, if you try to access the data for the NUMBER column before reading the
data from the stream data column, then the JDBC driver first reads then discards
the streaming data automatically. This can be very inefficient if the LONG column
contains a large amount of data.

If you try to access the LONG column later in the program, then the data will not be
available and the driver will return a "Stream Closed" error.

The later point is illustrated in the following example:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
 int n = rset.getInt(3); // This discards the streaming data
 InputStream is = rset.getAsciiStream(2);
 // Raises an error: stream closed.
}

If you get the stream but do not use it before you get the NUMBER column, then the
stream still closes automatically:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
 InputStream is = rset.getAsciiStream(2); // Get the stream
 int n = rset.getInt(3);
 // Discards streaming data and closes the stream
}
int c = is.read(); // c is -1: no more characters to read-stream closed

12.7.2 About Using Streams to Avoid Limits on setBytes and setString
Starting from Oracle Database 12c, the size limit of the data that is used with the
setBytes and setString methods, have been increased significantly. Any Java byte
array can be passed to setBytes, and any Java String can be passed to setString.
The JDBC driver automatically switches to using setBinaryStream or
setCharacterStream or to using setBytesForBlob or setStringForClob, depending
on the size of the data, whether the statement is SQL or PL/SQL, and the driver used.

There are some limitation with earlier versions of Oracle Database and in the server-
side internal driver.

Related Topics

• Data Interface for LOBs

Chapter 12
Notes and Precautions on Streams

12-11

12.7.3 Relation Between Streaming and Row Prefetching
If the JDBC driver encounters a column containing a data stream, then row fetch size
is set back to one. Row fetch size is an Oracle performance enhancement that
enables multiple rows of data to be retrieved with each trip to the database.

Chapter 12
Notes and Precautions on Streams

12-12

13
Working with Oracle Object Types

This chapter describes the Java Database Connectivity (JDBC) support for user-
defined object types. It discusses functionality of the generic, weakly typed
oracle.sql.STRUCT class, as well as how to map to custom Java classes that
implement either the JDBC standard SQLData interface or the Oracle-specific
OracleData interface.

Note:

Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.STRUCT
class is deprecated and replaced with the oracle.jdbc.OracleStruct
interface, which is a part of the oracle.jdbc package. Oracle strongly
recommends you to use the methods available in the java.sql package,
where possible, for standard compatibility and methods available in the
oracle.jdbc package for Oracle specific extensions. Refer to MoS Note
1364193.1 for more information about the oracle.jdbc.OracleStruct
interface.

The following topics are covered:

• About Mapping Oracle Objects

• About Using the Default STRUCT Class for Oracle Objects

• About Creating and Using Custom Object Classes for Oracle Objects

• Object-Type Inheritance

• About Describing an Object Type

Related Topics

• About Using PL/SQL Types

13.1 About Mapping Oracle Objects
Oracle object types provide support for composite data structures in the database. For
example, you can define a Person type that has the attributes name of CHAR type,
phoneNumber of CHAR type, and employeeNumber of NUMBER type.

Oracle provides tight integration between its Oracle object features and its JDBC
functionality. You can use a standard, generic JDBC type to map to Oracle objects, or
you can customize the mapping by creating custom Java type definition classes.

13-1

Note:

In this book, Java classes that you create to map to Oracle objects will be
referred to as custom Java classes or, more specifically, custom object
classes. This is as opposed to custom references classes, which are Java
classes that map to object references, and custom collection classes,
which are Java classes that map to Oracle collections.

Custom object classes can implement either a standard JDBC interface or an Oracle
extension interface to read and write data. JDBC materializes Oracle objects as
instances of particular Java classes. Two main steps in using JDBC to access Oracle
objects are:

1. Creating the Java classes for the Oracle objects

2. Populating these classes. You have the following options:

• Let JDBC materialize the object as a STRUCT object.

• Explicitly specify the mappings between Oracle objects and Java classes.

This includes customizing your Java classes for object data. The driver then
must be able to populate instances of the custom object classes that you
specify. This imposes a set of constraints on the Java classes. To satisfy
these constraints, you can define your classes to implement either the JDBC
standard java.sql.SQLData interface or the Oracle extension
oracle.jdbc.OracleData interface.

Note:

When you use the SQLData interface, you must use a Java type map to
specify your SQL-Java mapping, unless weakly typed java.sql.Struct
objects will suffice.

13.2 About Using the Default STRUCT Class for Oracle
Objects

This section covers the following topics:

• Overview of Using the Struct Class

• Retrieving STRUCT Objects and Attributes

• About Creating STRUCT Objects

• Binding STRUCT Objects into Statements

• STRUCT Automatic Attribute Buffering

Chapter 13
About Using the Default STRUCT Class for Oracle Objects

13-2

13.2.1 Overview of Using the Struct Class
If you choose not to supply a custom Java class for your SQL-Java mapping for an
Oracle object, then Oracle JDBC materializes the object as an object that implements
the java.sql.Struct interface.

You would typically want to use STRUCT objects, instead of custom Java objects, in
situations where you do not know the actual SQL type. For example, your Java
application might be a tool to manipulate arbitrary object data within the database, as
opposed to being an end-user application. You can select data from the database into
STRUCT objects and create STRUCT objects for inserting data into the database. STRUCT
objects completely preserve data, because they maintain the data in SQL format.
Using STRUCT objects is more efficient and more precise in situations where you do not
need the information in an application specific form.

13.2.2 Retrieving STRUCT Objects and Attributes
This section discusses how to retrieve and manipulate Oracle objects and their
attributes, using either Oracle-specific features or JDBC 2.0 standard features.

Note:

The JDBC driver seamlessly handles embedded objects, that is, STRUCT
objects that are attributes of STRUCT objects, in the same way that it typically
handles objects. When the JDBC driver retrieves an attribute that is an
object, it follows the same rules of conversion by using the type map, if it is
available, or by using default mapping.

Retrieving an Oracle Object as a java.sql.Struct Object

Alternatively, in the preceding example, you can use standard JDBC functionality,
such as getObject, to retrieve an Oracle object from the database as an instance of
java.sql.Struct. The getObject method returns a java.lang.Object, so, you must
cast the output of the method to Struct. For example:

ResultSet rs= stmt.executeQuery("SELECT * FROM struct_table");
java.sql.Struct jdbcStruct = (java.sql.Struct)rs.getObject(1);

Retrieving Attributes as oracle.sql Types

If you want to retrieve Oracle object attributes from a STRUCT or Struct instance as
oracle.sql types, then use the getOracleAttributes method of the
oracle.sql.STRUCT class, as follows:

oracle.sql.Datum[] attrs = oracleSTRUCT.getOracleAttributes();

or:

oracle.sql.Datum[] attrs = ((oracle.sql.STRUCT)jdbcStruct).getOracleAttributes();

Chapter 13
About Using the Default STRUCT Class for Oracle Objects

13-3

Retrieving Attributes as Standard Java Types

If you want to retrieve Oracle object attributes as standard Java types from a STRUCT or
Struct instance, use the standard getAttributes method:

Object[] attrs = jdbcStruct.getAttributes();

Note:

Oracle JDBC drivers cache array and structure descriptors. This provides
enormous performance benefits. However, it means that if you change the
underlying type definition of a structure type in the database, the cached
descriptor for that structure type will become stale and your application will
receive a SQLException exception.

13.2.3 About Creating STRUCT Objects
For information about creating STRUCT objects, refer to "Package oracle.sql".

Note:

If you have already fetched from the database a STRUCT of the appropriate
SQL object type, then the easiest way to get a STRUCT descriptor is to call
getDescriptor on one of the fetched STRUCT objects. Only one STRUCT
descriptor is needed for any one SQL object type.

13.2.4 Binding STRUCT Objects into Statements
To bind an oracle.sql.STRUCT object to a prepared statement or callable statement,
you can either use the standard setObject method (specifying the type code), or cast
the statement object to an Oracle statement type and use the Oracle extension
setOracleObject method. For example:

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
Struct mySTRUCT = conn.createStruct (...);
ps.setObject(1, mySTRUCT, Types.STRUCT);

or:

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
Struct mySTRUCT = conn.createStruct (...);
((OraclePreparedStatement)ps).setOracleObject(1, mySTRUCT);

13.2.5 STRUCT Automatic Attribute Buffering
Oracle JDBC driver furnishes public methods to enable and disable buffering of STRUCT
attributes.

Chapter 13
About Using the Default STRUCT Class for Oracle Objects

13-4

Note:

Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.STRUCT
class is deprecated and replaced with the oracle.jdbc.OracleStruct
interface, which is a part of the oracle.jdbc package. Oracle strongly
recommends you to use the methods available in the java.sql package,
where possible, for standard compatibility and methods available in the
oracle.jdbc package for Oracle specific extensions. Refer to MoS Note
1364193.1 for more information about the oracle.jdbc.OracleStruct
interface.

The following methods are included with the oracle.sql.STRUCT class:

• public void setAutoBuffering(boolean enable)

• public boolean getAutoBuffering()

The setAutoBuffering(boolean) method enables or disables auto-buffering. The
getAutoBuffering method returns the current auto-buffering mode. By default, auto-
buffering is disabled.

It is advisable to enable auto-buffering in a JDBC application when the STRUCT
attributes are accessed more than once by the getAttributes and getArray methods,
presuming the ARRAY data is able to fit into the Java Virtual Machine (JVM) memory
without overflow.

Note:

Buffering the converted attributes may cause the JDBC application to
consume a significant amount of memory.

When you enable auto-buffering, the oracle.sql.STRUCT object keeps a local copy of
all the converted attributes. This data is retained so that subsequent access of this
information does not require going through the data format conversion process.

Related Topics

• ARRAY Automatic Element Buffering

13.3 About Creating and Using Custom Object Classes for
Oracle Objects

This section covers the following topics:

• Overview of Creating and Using Custom Object Classes

• Relative Advantages of OracleData versus SQLData

• About Type Maps for SQLData Implementations

• About Creating Type Map and Defining Mappings for a SQLData Implementation

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13-5

• About Reading and Writing Data with a SQLData Implementation

• About the OracleData Interface

• About Reading and Writing Data with an OracleData Implementation

• Additional Uses of OracleData

13.3.1 Overview of Creating and Using Custom Object Classes
If you want to create custom object classes for your Oracle objects, then you must
define entries in the type map that specify the custom object classes that the drivers
instantiate for the corresponding Oracle objects.

You must also provide a way to create and populate instances of the custom object
class from the Oracle object and its attribute data. The driver must be able to read
from a custom object class and write to it. In addition, the custom object class can
provide getXXX and setXXX methods corresponding to the attributes of the Oracle
object, although this is not necessary. To create and populate the custom classes and
provide these read/write capabilities, you can choose between the following interfaces:

• The JDBC standard SQLData interface

• The OracleData and OracleDataFactory interfaces provided by Oracle

The custom object class you create must implement one of these interfaces. The
OracleData interface can also be used to implement the custom reference class
corresponding to the custom object class. However, if you are using the SQLData
interface, then you can use only weak reference types in Java, such as java.sql.Ref
or oracle.sql.REF. The SQLData interface is for mapping SQL objects only.

As an example, assume you have an Oracle object type, EMPLOYEE, in the database
that consists of two attributes: Name, which is of the CHAR type and EmpNum, which is of
the NUMBER type. You use the type map to specify that the EMPLOYEE object should map
to a custom object class that you call JEmployee. You can implement either the
SQLData or OracleData interface in the JEmployee class.

Related Topics

• Object-Type Inheritance

13.3.2 Relative Advantages of OracleData versus SQLData
In deciding which of the two interface implementations to use, you need to consider
the advantages of OracleData and SQLData.

The SQLData interface is for mapping SQL objects only. The OracleData interface is
more flexible, enabling you to map SQL objects as well as any other SQL type for
which you want to customize processing. You can create an OracleData
implementation from any data type found in Oracle Database. This could be useful, for
example, for serializing RAW data in Java.

Advantages of the OracleData Interface

The advantages of the OracleData interface are:

• It does not require an entry in the type map for the Oracle object.

• It has awareness of Oracle extensions.

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13-6

• You can construct an OracleData from an oracle.sql.STRUCT. This is more
efficient because it avoids unnecessary conversions to native Java types.

• You can obtain the corresponding JDBC object from OracleData, using the
toJDBCObject method.

Advantages of SQLData

SQLData is a JDBC standard that makes your code portable.

13.3.3 About Type Maps for SQLData Implementations
If you use the SQLData interface in a custom object class, then you must create type
map entries that specify the custom object class to use in mapping the Oracle object
type to Java. You can either use the default type map of the connection object or a
type map that you specify when you retrieve the data from the result set. The
getObject method of the ResultSet interface has a signature that lets you specify a
type map. You can use either of the following:

rs.getObject(int columnIndex);

rs.getObject(int columnIndex, Map map);

When using a SQLData implementation, if you do not include a type map entry, then
the object maps to the oracle.jdbc.OracleStruct interface by default. OracleData
implementations, by contrast, have their own mapping functionality so that a type map
entry is not required. When using an OracleData implementation, use the Oracle
getObject(int columnindex, OracleDataFactory factory)method.

The type map relates a Java class to the SQL type name of an Oracle object. This
one-to-one mapping is stored in a hash table as a keyword-value pair. When you read
data from an Oracle object, the JDBC driver considers the type map to determine
which Java class to use to materialize the data from the Oracle object type. When you
write data to an Oracle object, the JDBC driver gets the SQL type name from the Java
class by calling the getSQLTypeName method of the SQLData interface. The actual
conversion between SQL and Java is performed by the driver.

The attributes of the Java class that corresponds to an Oracle object can use either
Java native types or Oracle native types to store attributes.

Related Topics

• About Creating and Using Custom Object Classes for Oracle Objects

13.3.4 About Creating Type Map and Defining Mappings for a
SQLData Implementation

This section covers the following topics:

• Overview of Creating a Type Map and Defining Mappings

• Adding Entries to an Existing Type Map

• Creating a New Type Map

• About Materializing Object Types not Specified in the Type Map

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13-7

13.3.4.1 Overview of Creating a Type Map and Defining Mappings
When using a SQLData implementation, the JDBC applications programmer is
responsible for providing a type map, which must be an instance of a class that
implements the standard java.util.Map interface.

You have the option of creating your own class to accomplish this, but the standard
java.util.Hashtable class meets the requirement.

Hashtable and other classes used for type maps implement a put method that takes
keyword-value pairs as input, where each key is a fully qualified SQL type name and
the corresponding value is an instance of a specified Java class.

A type map is associated with a connection instance. The standard
java.sql.Connection interface and the Oracle-specific
oracle.jdbc.OracleConnection interface include a getTypeMap method. Both return a
Map object.

13.3.4.2 Adding Entries to an Existing Type Map
When a connection instance is first established, the default type map is empty. You
must populate it.

Perform the following general steps to add entries to an existing type map:

1. Use the getTypeMap method of your OracleConnection object to return the type
map object of the connection. The getTypeMap method returns a java.util.Map
object. For example, presuming an OracleConnection instance oraconn:

java.util.Map myMap = oraconn.getTypeMap();

Note:

If the type map in the OracleConnection instance has not been
initialized, then the first call to getTypeMap returns an empty map.

2. Use the put method of the type map to add map entries. The put method takes
two arguments: a SQL type name string and an instance of a specified Java class
that you want to map to.

myMap.put(sqlTypeName, classObject);

The sqlTypeName is a string that represents the fully qualified name of the SQL
type in the database. The classObject is the Java class object to which you want
to map the SQL type. Get the class object with the Class.forName method, as
follows:

myMap.put(sqlTypeName, Class.forName(className));

For example, if you have a PERSON SQL data type defined in the CORPORATE
database schema, then map it to a Person Java class defined as Person with this
statement:

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13-8

myMap.put("CORPORATE.PERSON", Class.forName("Person"));
oraconn.setTypeMap(newMap);

The map has an entry that maps the PERSON SQL data type in the CORPORATE
database to the Person Java class.

Note:

SQL type names in the type map must be all uppercase, because that is
how Oracle Database stores SQL names.

13.3.4.3 Creating a New Type Map
Perform the following general steps to create a new type map. This example uses an
instance of java.util.Hashtable, which extends java.util.Dictionary and
implements java.util.Map.

1. Create a new type map object.

Hashtable newMap = new Hashtable();

2. Use the put method of the type map object to add entries to the map. For
example, if you have an EMPLOYEE SQL type defined in the CORPORATE database,
then you can map it to an Employee class object defined by Employee.java, as
follows:

newMap.put("CORPORATE.EMPLOYEE", class.forName("Employee"));

3. When you finish adding entries to the map, you must use the setTypeMap method
of the OracleConnection object to overwrite the existing type map of the
connection. For example:

oraconn.setTypeMap(newMap);

In this example, the setTypeMap method overwrites the original map of the
oraconn connection object with newMap.

Note:

The default type map of a connection instance is used when mapping is
required but no map name is specified, such as for a result set
getObject call that does not specify the map as input.

13.3.4.4 About Materializing Object Types not Specified in the Type Map
If you do not provide a type map with an appropriate entry when using a getObject
call, then the JDBC driver will materialize an Oracle object as an instance of the
oracle.jdbc.OracleStruct interface. If the Oracle object type contains embedded
objects and they are not present in the type map, then the driver will materialize the
embedded objects as instances of oracle.jdbc.OracleStruct as well. If the
embedded objects are present in the type map, then a call to the getAttributes

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13-9

method will return embedded objects as instances of the specified Java classes from
the type map.

13.3.5 About Reading and Writing Data with a SQLData
Implementation

This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements SQLData.

Reading SQLData Objects from a Result Set

The following text summarizes the steps to read data from an Oracle object into your
Java application when you choose the SQLData implementation for your custom object
class.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class, updated the type map to define the mapping
between the Oracle object and the Java class, and defined a statement object stmt.

1. Query the database to read the Oracle object into a JDBC result set.

ResultSet rs = stmt.executeQuery("SELECT emp_col FROM personnel");

The PERSONNEL table contains one column, EMP_COL, of SQL type EMP_OBJECT. This
SQL type is defined in the type map to map to the Java class Employee.

2. Use the getObject method of Oracle result set to populate an instance of your
custom object class with data from one row of the result set. The getObject
method returns the user-defined SQLData object because the type map contains an
entry for Employee.

if (rs.next())
 Employee emp = (Employee)rs.getObject(1);

Note that if the type map did not have an entry for the object, then the getObject
method will return an oracle.jdbc.OracleStruct object. Cast the output to type
OracleStruct because the getObject method signature returns the generic
java.lang.Object type.

if (rs.next())
 OracleStruct empstruct = (OracleStruct)rs.getObject(1);

The getObject method calls readSQL, which, in turn, calls readXXX from the
SQLData interface.

Note:

If you want to avoid using the defined type map, then use the getSTRUCT
method. This method always returns a STRUCT object, even if there is a
mapping entry in the type map.

3. If you have get methods in your custom object class, then use them to read data
from your object attributes. For example, if EMPLOYEE has the attributes EmpName of
type CHAR and EmpNum of type NUMBER, then provide a getEmpName method that

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13-10

returns a Java String and a getEmpNum method that returns an int value. Then
call them in your Java application, as follows:

String empname = emp.getEmpName();
int empnumber = emp.getEmpNum();

Retrieving SQLData Objects from a Callable Statement OUT Parameter

Consider you have a CallableStatement instance, cs, that calls a PL/SQL function
GETEMPLOYEE. The program passes an employee number to the function. The function
returns the corresponding Employee object. To retrieve this object you do the following:

1. Prepare a CallableStatement to call the GETEMPLOYEE function, as follows:

CallableStatement ocs = conn.prepareCall("{ ? = call GETEMPLOYEE(?) }");

2. Declare the empnumber as the input parameter to GETEMPLOYEE. Register the
SQLData object as the OUT parameter, with the type code OracleTypes.STRUCT.
Then, run the statement. This can be done as follows:

cs.setInt(2, empnumber);
cs.registerOutParameter(1, OracleTypes.STRUCT, "EMP_OBJECT");
cs.execute();

3. Use the getObject method to retrieve the employee object.

Employee emp = (Employee)cs.getObject(1);

If there is no type map entry, then the getObject method will return a
java.sql.Struct object.

Struct emp = cs.getObject(1);

Passing SQLData Objects to a Callable Statement as an IN Parameter

Suppose you have a PL/SQL function addEmployee(?) that takes an Employee object
as an IN parameter and adds it to the PERSONNEL table. In this example, emp is a valid
Employee object.

1. Prepare an CallableStatement to call the addEmployee(?) function.

CallableStatement cs =
 conn.prepareCall("{ call addEmployee(?) }");

2. Use setObject to pass the emp object as an IN parameter to the callable
statement. Then, call the statement.

cs.setObject(1, emp);
cs.execute();

Writing Data to an Oracle Object Using a SQLData Implementation

The following text describes the steps in writing data to an Oracle object from your
Java application when you choose the SQLData implementation for your custom object
class.

This description assumes you have already defined the Oracle object type, created the
corresponding Java class, and updated the type map to define the mapping between
the Oracle object and the Java class.

1. If you have set methods in your custom object class, then use them to write data
from Java variables in your application to attributes of your Java data type object.

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13-11

emp.setEmpName(empname);
emp.setEmpNum(empnumber);

2. Prepare a statement that updates an Oracle object in a row of a database table, as
appropriate, using the data provided in your Java data type object.

PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO PERSONNEL VALUES (?)");

3. Use the setObject method of the prepared statement to bind your Java data type
object to the prepared statement.

pstmt.setObject(1, emp);

4. Run the statement, which updates the database.

pstmt.executeUpdate();

13.3.6 About the OracleData Interface
You can create a custom object class that implements the oracle.jdbc.OracleData
and the oracle.jdbc.OracleDataFactory interfaces to make an Oracle object and its
attribute data available to Java applications. The OracleData and OracleDataFactory
interfaces are Oracle-specific and are not a part of the JDBC standard.

Note:

Starting from Oracle Database 12c Release 1 (12.1), the OracleData and the
OracleDataFactory interfaces replace the ORAData and the ORADataFactory
interfaces.

Understanding the OracleData Interface Features

The OracleData interface has the following advantages:

• It supports Oracle extensions to the standard JDBC types.

• It does not require a type map to specify the names of the Java custom classes
you want to create.

• It provides better performance. OracleData works directly with Datum types, the
internal format the driver uses to hold Oracle objects.

The OracleData and the OracleDataFactory interfaces perform the following:

• The toJDBCObject method of the OracleData class transforms the data into an
oracle.jdbc.* representation.

• OracleDataFactory specifies a create method equivalent to a constructor for the
custom object class. It creates and returns an OracleData instance. The JDBC
driver uses the create method to return an instance of the custom object class to
your Java application. It takes as input a java.lang.Object object and an integer
indicating the corresponding SQL type code as specified in the OracleTypes class.

OracleData and OracleDataFactory have the following definitions:

package oracle.jdbc;
import java.sql.Connection;
import java.sql.SQLException;

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13-12

public interface OracleData
{
 public Object toJDBCObject(Connection conn) throws SQLException;
}

package oracle.jdbc;
import java.sql.SQLException;
public interface OracleDataFactory
{
 public OracleData create(Object jdbcValue, int sqlType) throws SQLException;

}

Where conn represents the Connection object, jdbcValue represents an object of type
java.lang.object that is to be used to initialize the Object being created, and sqlType
represents the SQL type of the specified Datum object.

Retrieving and Inserting Object Data

The JDBC drivers provide the following methods to retrieve and insert object data as
instances of OracleData.

You can retrieve the object data in one of the following ways:

• Use the following getObject method of the Oracle-specific OracleResultSet
interface:

ors.getObject(int col_index, OracleDataFactory factory
);

This method takes as input the column index of the data in your result set and an
OracleDataFactory instance. For example, you can implement a
getOracleDataFactory method in your custom object class to produce the
OracleDataFactory instance to input to the getObject method. The type map is
not required when using Java classes that implement OracleData.

• Use the standard getObject(index, map) method specified by the ResultSet
interface to retrieve data as instances of OracleData. In this case, you must have
an entry in the type map that identifies the factory class to be used for the given
object type and its corresponding SQL type name.

You can insert object data in one of the following ways:

• Use the following setObject method of the Oracle-specific
OraclePreparedStatement class:

setObject(int bind_index, Object custom_object);

This method takes as input the parameter index of the bind variable and an
instance of OracleData as the name of the object containing the variable.

• Use the standard setObject method specified by the PreparedStatement
interface. You can also use this method, in its different forms, to insert OracleData
instances without requiring a type map.

The following sections describe the getObject and setObject methods.

To continue the example of an Oracle object EMPLOYEE, you might have something like
the following in your Java application:

OracleData obj = ors.getObject(1, Employee.getOracleDataFactory());

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13-13

In this example, ors is an instance of the OracleResultSet interface, getObject is a
method in the OracleResultSet interface used to retrieve an OracleData object, and
the EMPLOYEE is in column 1 of the result set. The static
Employee.getOracleDataFactory method will return an OracleDataFactory to the
JDBC driver. The JDBC driver will call create() from this object, returning to your Java
application an instance of the Employee class populated with data from the result set.

Note:

• OracleData and OracleDataFactory are defined as separate interfaces
so that different Java classes can implement them if you wish.

• To use the OracleData interface, your custom object classes must import
oracle.jdbc.*.

13.3.7 About Reading and Writing Data with an OracleData
Implementation

This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements OracleData.

Reading Data from an Oracle Object Using an OracleData Implementation

The following text summarizes the steps in reading data from an Oracle object into
your Java application. These steps apply whether you implement OracleData manually
or use Oracle JVM Web Service Call-Out utility to produce your custom object classes.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class or had Oracle JVM Web Service Call-Out utility
create it for you, and defined a statement object stmt.

1. Query the database to read the Oracle object into a result set, casting it to an
Oracle result set.

OracleResultSet ors = (OracleResultSet)stmt.executeQuery
 ("SELECT Emp_col FROM PERSONNEL");

Where PERSONNEL is a one-column table. The column name is Emp_col of type
Employee_object.

2. Use the getObject method of Oracle result set to populate an instance of your
custom object class with data from one row of the result set. The getObject
method returns a java.lang.Object object, which you can cast to your specific
custom object class.

if (ors.next())
 Employee emp = (Employee)ors.getObject(1, Employee.getOracleDataFactory());

or:

if (ors.next())
 Object obj = ors.getObject(1, Employee.getOracleDataFactory());

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13-14

This example assumes that Employee is the name of your custom object class and
ors is the name of your OracleResultSet instance.

For example, if the SQL type name for your object is EMPLOYEE, then the
corresponding Java class is Employee, which will implement OracleData. The
corresponding Factory class is EmployeeFactory, which will implement
OracleDataFactory.

Use this statement to declare the EmployeeFactory entry for your type map:

map.put ("EMPLOYEE", Class.forName ("EmployeeFactory"));

Then use the form of getObject where you specify the map object:

Employee emp = (Employee) rs.getObject (1, map);

If the default type map of the connection already has an entry that identifies the
factory class to be used for the given object type and its corresponding SQL type
name, then you can use this form of getObject:

Employee emp = (Employee) rs.getObject (1);

3. If you have get methods in your custom object class, then use them to read data
from your object attributes into Java variables in your application. For example, if
EMPLOYEE has EmpName of type CHAR and EmpNum of type NUMBER, provide a
getEmpName method that returns a Java String and a getEmpNum method that
returns an integer. Then call them in your Java application as follows:

String empname = emp.getEmpName();
int empnumber = emp.getEmpNum();

Writing Data to an Oracle Object Using an OracleData Implementation

The following text summarizes the steps in writing data to an Oracle object from your
Java application. These steps apply whether you implement OracleData manually or
use Oracle JVM Web Service Call-Out utility to produce your custom object classes.

These steps assume you have already defined the Oracle object type and created the
corresponding custom object class.

Note:

The type map is not used when you are performing database INSERT and
UPDATE operations.

1. If you have set methods in your custom object class, then use them to write data
from Java variables in your application to attributes of your Java data type object.

emp.setEmpName(empname);
emp.setEmpNum(empnumber);

2. Write an Oracle prepared statement that updates an Oracle object in a row of a
database table, as appropriate, using the data provided in your Java data type
object.

OraclePreparedStatement opstmt = conn.prepareStatement
 ("UPDATE PERSONNEL SET Employee = ? WHERE Employee.EmpNum = 28959);

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13-15

This assumes conn is your Connection object.

3. Use the setObject method of the OraclePreparedStatement interface to bind your
Java data type object to the prepared statement.

opstmt.setObject(1,emp);

The setObject method calls the toJDBCObject method of the custom object class
instance to retrieve an oracle.jdbc.OracleStruct object that can be written to
the database.

Note:

You can use your Java data type objects as either IN or OUT bind
variables.

13.3.8 Additional Uses of OracleData
The OracleData interface offers far more flexibility than the SQLData interface. The
SQLData interface is designed to let you customize the mapping of only Oracle object
types to Java types of your choice. Implementing the SQLData interface lets the JDBC
driver populate fields of a custom Java class instance from the original SQL object
data, and the reverse, after performing the appropriate conversions between Java and
SQL types.

The OracleData interface goes beyond supporting the customization of Oracle object
types to Java types. It lets you provide a mapping between Java object types and any
SQL type supported by the oracle.sql package.

You may find it useful to provide custom Java classes to wrap oracle.sql.* types and
then implement customized conversions or functionality as well. The following are
some possible scenarios:

• Performing encryption and decryption or validation of data

• Performing logging of values that have been read or are being written

• Parsing character columns, such as character fields containing URL information,
into smaller components

• Mapping character strings into numeric constants

• Making data into more desirable Java formats, such as mapping a DATE field to
java.util.Date format

• Customizing data representation, for example, data in a table column is in feet but
you want it represented in meters after it is selected

• Serializing and deserializing Java objects

For example, use OracleData to store instances of Java objects that do not
correspond to a particular SQL object type in the database in columns of SQL type
RAW. The create method in OracleDataFactory would have to implement a conversion
from an object of type oracle.sql.RAW to the desired Java object. The toJDBCObject
method in OracleData would have to implement a conversion from the Java object to
an oracle.sql.RAW object. You can also achieve this using Java serialization.

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13-16

Upon retrieval, the JDBC driver transparently retrieves the raw bytes of data in the
form of an oracle.sql.RAW and calls the create method of OracleDataFactory to
convert the oracle.sql.RAW object to the desired Java class.

When you insert the Java object into the database, you can simply bind it to a column
of type RAW to store it. The driver transparently calls the OracleData.toJDBCObject
method to convert the Java object to an oracle.sql.RAW object. This object is then
stored in a column of type RAW in the database.

Support for the OracleData interfaces is also highly efficient because the conversions
are designed to work using oracle.sql.* formats, which happen to be the internal
formats used by the JDBC drivers. Moreover, the type map, which is necessary for the
SQLData interface, is not required when using Java classes that implement
OracleData.

Related Topics

• About the OracleData Interface

13.4 Object-Type Inheritance
Object-type inheritance allows a new object type to be created by extending another
object type. The new object type is then a subtype of the object type from which it
extends. The subtype automatically inherits all the attributes and methods defined in
the supertype. The subtype can add attributes and methods and overload or override
methods inherited from the supertype.

Object-type inheritance introduces substitutability. Substitutability is the ability of a
slot declared to hold a value of type T in addition to any subtype of type T. Oracle
JDBC drivers handle substitutability transparently.

A database object is returned with its most specific type without losing information. For
example, if the STUDENT_T object is stored in a PERSON_T slot, Oracle JDBC driver
returns a Java object that represents the STUDENT_T object.

This section covers the following topics:

• About Creating Subtypes

• About Implementing Customized Classes for Subtypes

• About Retrieving Subtype Objects

• Creating Subtype Objects

• Sending Subtype Objects

• Accessing Subtype Data Fields

• Inheritance Metadata Methods

13.4.1 About Creating Subtypes
Create custom object classes if you want to have Java classes that explicitly
correspond to the Oracle object types. If you have a hierarchy of object types, you may
want a corresponding hierarchy of Java classes.

The most common way to create a database subtype in JDBC is to run a SQL CREATE
TYPE command using the execute method of the java.sql.Statement interface. For

Chapter 13
Object-Type Inheritance

13-17

example, you want to create a type inheritance hierarchy as depicted in the following
figure:

Figure 13-1 Type Inheritance Hierarchy

PERSON_T

PARTTIMESTUDENT_T

STUDENT_T

The JDBC code for this can be as follows:

Statement s = conn.createStatement();
s.execute ("CREATE TYPE Person_T (SSN NUMBER, name VARCHAR2(30),
 address VARCHAR2(255))");
s.execute ("CREATE TYPE Student_T UNDER Person_t (deptid NUMBER,
 major VARCHAR2(100))");
s.execute ("CREATE TYPE PartTimeStudent_t UNDER Student_t (numHours NUMBER)");

In the following code, the foo member procedure in type ST is overloaded and the
member procedure print overwrites the copy it inherits from type T.

CREATE TYPE T AS OBJECT (...,
 MEMBER PROCEDURE foo(x NUMBER),
 MEMBER PROCEDURE Print(),
 ...
 NOT FINAL;

CREATE TYPE ST UNDER T (...,
 MEMBER PROCEDURE foo(x DATE), <-- overload "foo"
 OVERRIDING MEMBER PROCEDURE Print(), <-- override "print"
 STATIC FUNCTION bar(...) ...
 ...
);

Once the subtypes have been created, they can be used as both columns of a base
table as well as attributes of an object type.

See Also:

Oracle Database Object-Relational Developer's Guide

Chapter 13
Object-Type Inheritance

13-18

13.4.2 About Implementing Customized Classes for Subtypes
In most cases, a customized Java class represents a database object type. When you
create a customized Java class for a subtype, the Java class can either mirror the
database object type hierarchy or not.

You can use either the OracleData or SQLData solution in creating classes to map to
the hierarchy of object types.

This section covers the following topics:

• About Using OracleData for Type Inheritance Hierarchy

• About UsingSQLData for Type Inheritance Hierarchy

13.4.2.1 About Using OracleData for Type Inheritance Hierarchy
Oracle recommends customized mappings, where Java classes implement the
oracle.sql.OracleData interface. OracleData mapping requires the JDBC application
to implement the OracleData and OracleDataFactory interfaces. The class
implementing the OracleDataFactory interface contains a factory method that
produces objects. Each object represents a database object.

The hierarchy of the class implementing the OracleData interface can mirror the
database object type hierarchy. For example, the Java classes mapping to PERSON_T
and STUDENT_T are as follows:

Person.java using OracleData

Code for the Person.java class which implements the OracleData and
OracleDataFactory interfaces:

public static OracleDataFactory getOracleDataFactory()
 {
 return _personFactory;
 }

 public Person () {}

 public Person(NUMBER ssn, CHAR name, CHAR address)
 {
 this.ssn = ssn;
 this.name = name;
 this.address = address;
 }

 public Object toJDBCObject(OracleConnection c) throws SQLException
 {
 Object [] attributes = { ssn, name, address };
 Struct struct = c.createStruct("HR.PERSON_T", attributes);
 return struct;
 }

 public OracleData create(Object jdbcValue, int sqlType) throws SQLException
 {
 if (d == null) return null;
 Object [] attributes = ((STRUCT) d).getOracleAttributes();
 return new Person((NUMBER) attributes[0],

Chapter 13
Object-Type Inheritance

13-19

 (CHAR) attributes[1],
 (CHAR) attributes[2]);
 }
}

Student.java extending Person.java

Code for the Student.java class, which extends the Person.java class:

class Student extends Person
{
 static final Student _studentFactory = new Student ();

 public NUMBER deptid;
 public CHAR major;

 public static OracleDataFactory getOracleDataFactory()
 {
 return _studentFactory;
 }

 public Student () {}

 public Student (NUMBER ssn, CHAR name, CHAR address,
 NUMBER deptid, CHAR major)
 {
 super (ssn, name, address);
 this.deptid = deptid;
 this.major = major;
 }

 public Object toJDBCObject(OracleConnection c) throws SQLException
 {
 Object [] attributes = { ssn, name, address, deptid, major };
 Struct struct = c.createStruct("HR.STUDENT_T", attributes);
 return struct;
 }

 public OracleData create(Object jdbcValue, int sqlType) throws SQLException
 {
 if (d == null) return null;
 Object [] attributes = ((STRUCT) d).getOracleAttributes();
 return new Student((NUMBER) attributes[0],
 (CHAR) attributes[1],
 (CHAR) attributes[2],
 (NUMBER) attributes[3],
 (CHAR) attributes[4]);
 }
}

Customized classes that implement the OracleData interface do not have to mirror the
database object type hierarchy. For example, you could have declared the Student
class without a superclass. In this case, Student would contain fields to hold the
inherited attributes from PERSON_T as well as the attributes declared by STUDENT_T.

OracleDataFactory Implementation

The JDBC application uses the factory class in querying the database to return
instances of Person or its subclasses, as in the following example:

Chapter 13
Object-Type Inheritance

13-20

ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 rset.getOracleData(1,Person.getOracleDataFactory());
 ...
}

A class implementing the OracleDataFactory interface should be able to produce
instances of the associated custom object type, as well as instances of any subtype, or
at least all the types you expect to support.

In the following example, the PersonFactory.getOracleDataFactory method returns a
factory that can handle PERSON_T, STUDENT_T, and PARTTIMESTUDENT_T objects, by
returning person, student, or parttimestudent Java instances.

class PersonFactory implements OracleDataFactory
{
 static final PersonFactory _factory = new PersonFactory ();

 public static OracleDataFactory getOracleDataFactory()
 {
 return _factory;
 }

 public OracleData create(Object jdbcValue, int sqlType) throws SQLException
 {
 STRUCT s = (STRUCT) jdbcValue;
 if (s.getSQLTypeName ().equals ("HR.PERSON_T"))
 return Person.getOracleDataFactory ().create (jdbcValue, sqlType);
 else if (s.getSQLTypeName ().equals ("HR.STUDENT_T"))
 return Student.getOracleDataFactory ().create(jdbcValue, sqlType);
 else if (s.getSQLTypeName ().equals ("HR.PARTTIMESTUDENT_T"))
 return ParttimeStudent.getOracleDataFactory ().create(jdbcValue, sqlType);
 else
 return null;
 }
}

The following example assumes a table tabl1, such as the following:

CREATE TABLE tabl1 (idx NUMBER, person PERSON_T);
INSERT INTO tabl1 VALUES (1, PERSON_T (1000, 'HR', '100 Oracle Parkway'));
INSERT INTO tabl1 VALUES (2, STUDENT_T (1001, 'Peter', '200 Oracle Parkway', 101,
'CS'));
INSERT INTO tabl1 VALUES (3, PARTTIMESTUDENT_T (1002, 'David', '300 Oracle Parkway',
102, 'EE'));

13.4.2.2 About UsingSQLData for Type Inheritance Hierarchy
The customized classes that implement the java.sql.SQLData interface can mirror the
database object type hierarchy. The readSQL and writeSQL methods of a subclass
typically call the corresponding superclass methods to read or write the superclass
attributes before reading or writing the subclass attributes. For example, the Java
classes mapping to PERSON_T and STUDENT_T are as follows:

Person.java using SQLData

Code for the Person.java class, which implements the SQLData interface:

Chapter 13
Object-Type Inheritance

13-21

import java.sql.*;

public class Person implements SQLData
{
 private String sql_type;
 public int ssn;
 public String name;
 public String address;

 public Person () {}

 public String getSQLTypeName() throws SQLException { return sql_type; }

 public void readSQL(SQLInput stream, String typeName) throws SQLException
 {
 sql_type = typeName;
 ssn = stream.readInt();
 name = stream.readString();
 address = stream.readString();
 }

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 stream.writeInt (ssn);
 stream.writeString (name);
 stream.writeString (address);
 }
}

Student.java extending Student.java

Code for the Student.java class, which extends the Person.java class:

import java.sql.*;

public class Student extends Person
{
 private String sql_type;
 public int deptid;
 public String major;

 public Student () { super(); }

 public String getSQLTypeName() throws SQLException { return sql_type; }

 public void readSQL(SQLInput stream, String typeName) throws SQLException
 {
 super.readSQL (stream, typeName); // read supertype attributes
 sql_type = typeName;
 deptid = stream.readInt();
 major = stream.readString();
 }

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 super.writeSQL (stream); // write supertype
 // attributes
 stream.writeInt (deptid);
 stream.writeString (major);
 }
}

Chapter 13
Object-Type Inheritance

13-22

Although not required, it is recommended that the customized classes, which
implement the SQLData interface, mirror the database object type hierarchy. For
example, you could have declared the Student class without a superclass. In this
case, Student would contain fields to hold the inherited attributes from PERSON_T as
well as the attributes declared by STUDENT_T.

Student.java using SQLData

Code for the Student.java class, which does not extend the Person.java class, but
implements the SQLData interface directly:

import java.sql.*;

public class Student implements SQLData
{
 private String sql_type;

 public int ssn;
 public String name;
 public String address;
 public int deptid;
 public String major;

 public Student () {}

 public String getSQLTypeName() throws SQLException { return sql_type; }

 public void readSQL(SQLInput stream, String typeName) throws SQLException
 {
 sql_type = typeName;
 ssn = stream.readInt();
 name = stream.readString();
 address = stream.readString();
 deptid = stream.readInt();
 major = stream.readString();
 }

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 stream.writeInt (ssn);
 stream.writeString (name);
 stream.writeString (address);
 stream.writeInt (deptid);
 stream.writeString (major);
 }
}

13.4.3 About Retrieving Subtype Objects
In a typical JDBC application, a subtype object is returned as one of the following:

• A query result

• A PL/SQL OUT parameter

• A type attribute

You can use either the default mapping or the SQLData mapping or the OracleData
mapping to retrieve a subtype.

Chapter 13
Object-Type Inheritance

13-23

Using Default Mapping

By default, a database object is returned as an instance of the
oracle.jdbc.OracleStruct interface. This instance may represent an object of either
the declared type or subtype of the declared type. If the OracleStruct interface
represents a subtype object in the database, then it contains the attributes of its
supertype as well as those defined in the subtype.

Oracle JDBC driver returns database objects in their most specific type. The JDBC
application can use the getSQLTypeName method of the OracleStruct interface to
determine the SQL type of the STRUCT object. The following code shows this:

// tab1.person column can store PERSON_T, STUDENT_T and PARTIMESTUDENT_T objects
ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 oracle.sql.STRUCT s = (oracle.sql.STRUCT) rset.getObject(1);
 if (s != null)
 System.out.println (s.getSQLTypeName()); // print out the type name which
 // may be HR.PERSON_T, HR.STUDENT_T or HR.PARTTIMESTUDENT_T
}

Using SQLData Mapping

With SQLData mapping, the JDBC driver returns the database object as an instance of
the class implementing the SQLData interface.

To use SQLData mapping in retrieving database objects, do the following:

1. Implement the container classes that implement the SQLData interface for the
desired object types.

2. Populate the connection type map with entries that specify what custom Java type
corresponds to each Oracle object type.

3. Use the getObject method to access the SQL object values.

The JDBC driver checks the type map for an entry match. If one exists, then the
driver returns the database object as an instance of the class implementing the
SQLData interface.

The following code shows the whole SQLData customized mapping process:

// The JDBC application developer implements Person.java for PERSON_T,
// Student.java for STUDENT_T
// and ParttimeStudent.java for PARTTIMESTUDEN_T.

Connection conn = ...; // make a JDBC connection

// obtains the connection typemap
java.util.Map map = conn.getTypeMap ();

// populate the type map
map.put ("HR.PERSON_T", Class.forName ("Person"));
map.put ("HR.STUDENT_T", Class.forName ("Student"));
map.put ("HR.PARTTIMESTUDENT_T", Class.forName ("ParttimeStudent"));

// tab1.person column can store PERSON_T, STUDENT_T and PARTTIMESTUDENT_T objects
ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{

Chapter 13
Object-Type Inheritance

13-24

 // "s" is instance of Person, Student or ParttimeStudent
 Object s = rset.getObject(1);

 if (s != null)
 {
 if (s instanceof Person)
 System.out.println ("This is a Person");
 else if (s instanceof Student)
 System.out.println ("This is a Student");
 else if (s instanceof ParttimeStudent)
 System.out.pritnln ("This is a PartimeStudent");
 else
 System.out.println ("Unknown type");
 }
}

The JDBC drivers check the connection type map for each call to the following:

• getObject method of the java.sql.ResultSet and java.sql.CallableStatement
interfaces

• getAttribute method of the java.sql.Struct interface

• getArray method of the java.sql.Array interface

• getValue method of the oracle.sql.REF interface

Using OracleData Mapping

With OracleData mapping, the JDBC driver returns the database object as an instance
of the class implementing the OracleData interface.

Oracle JDBC driver needs to be informed of what Java class is mapped to the Oracle
object type. The following are the two ways to inform Oracle JDBC drivers:

• The JDBC application uses the getObject(int idx, OracleDataFactory f)
method to access database objects. The second parameter of the getObject
method specifies an instance of the factory class that produces the customized
class. The getObject method is available in the OracleResultSet and
OracleCallableStatement interfaces.

• The JDBC application populates the connection type map with entries that specify
what custom Java type corresponds to each Oracle object type. The getObject
method is used to access the Oracle object values.

The second approach involves the use of the standard getObject method. The
following code example demonstrates the first approach:

// tab1.person column can store both PERSON_T and STUDENT_T objects
ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 Object s = rset.getObject(1, PersonFactory.getOracleDataFactory());
 if (s != null)
 {
 if (s instanceof Person)
 System.out.println ("This is a Person");
 else if (s instanceof Student)
 System.out.println ("This is a Student");
 else if (s instanceof ParttimeStudent)
 System.out.pritnln ("This is a PartimeStudent");
 else

Chapter 13
Object-Type Inheritance

13-25

 System.out.println ("Unknown type");
 }
}

13.4.4 Creating Subtype Objects
There are cases where JDBC applications create database subtype objects with JDBC
drivers. These objects are sent either to the database as bind variables or are used to
exchange information within the JDBC application.

With customized mapping, the JDBC application creates either SQLData-based or
OracleData-based objects, depending on the approach you choose, to represent
database subtype objects. With default mapping, the JDBC application creates STRUCT
objects to represent database subtype objects. All the data fields inherited from the
supertype as well as all the fields defined in the subtype must have values. The
following code demonstrates this:

Connection conn = ... // make a JDBC connection
...
Object[] attrs = {
 new Integer(1234), "HR", "500 Oracle Parkway", // data fields defined in
 // PERSON_T
 new Integer(102), "CS", // data fields defined in
 // STUDENT_T
 new Integer(4) // data fields defined in
 // PARTTIMESTUDENT_T
};
Struct s = conn.createStruct("HR.PARTTIMESTUDENT", attrs);

s is initialized with data fields inherited from PERSON_T and STUDENT_T, and data fields
defined in PARTTIMESTUDENT_T.

13.4.5 Sending Subtype Objects
In a typical JDBC application, a Java object that represents a database object is sent
to the databases as one of the following:

• A data manipulation language (DML) bind variable

• A PL/SQL IN parameter

• An object type attribute value

The Java object can be an instance of the STRUCT class or an instance of the class
implementing either the SQLData or OracleData interface. Oracle JDBC driver will
convert the Java object into the linearized format acceptable to the database SQL
engine. Binding a subtype object is the same as binding a standard object.

13.4.6 Accessing Subtype Data Fields
While the logic to access subtype data fields is part of the customized class, this logic
for default mapping is defined in the JDBC application itself. The database objects are
returned as instances of the oracle.jdbc.OracleStruct class. The JDBC application
needs to call one of the following access methods in the STRUCT class to access the
data fields:

• Object[] getAttribute()

Chapter 13
Object-Type Inheritance

13-26

• oracle.sql.Datum[] getOracleAttribute()

Subtype Data Fields from the getAttribute Method

The getAttribute method of the java.sql.Struct interface is used in JDBC 2.0 to
access object data fields. This method returns a java.lang.Object array, where each
array element represents an object attribute. You can determine the individual element
type by referencing the corresponding attribute type in the JDBC conversion matrix.
For example, a SQL NUMBER attribute is converted to a java.math.BigDecimal object.
The getAttribute method returns all the data fields defined in the supertype of the
object type as well as data fields defined in the subtype. The supertype data fields are
listed first followed by the subtype data fields.

Subtype Data Fields from the getOracleAttribute Method

The getOracleAttribute method is an Oracle extension method and is more efficient
than the getAttribute method. The getOracleAttribute method returns an
oracle.sql.Datum array to hold the data fields. Each element in the
oracle.sql.Datum array represents an attribute. You can determine the individual
element type by referencing the corresponding attribute type in the Oracle conversion
matrix. For example, a SQL NUMBER attribute is converted to an oracle.sql.NUMBER
object. The getOracleAttribute method returns all the attributes defined in the
supertype of the object type, as well as attributes defined in the subtype. The
supertype data fields are listed first followed by the subtype data fields.

The following code shows the use of the getAttribute method:

// tab1.person column can store PERSON_T, STUDENT_T and PARTIMESTUDENT_T objects
ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 oracle.sql.STRUCT s = (oracle.sql.STRUCT) rset.getObject(1);
 if (s != null)
 {
 String sqlname = s.getSQLTypeName();

 Object[] attrs = s.getAttribute();

 if (sqlname.equals ("HR.PERSON")
 {
 System.out.println ("ssn="+((BigDecimal)attrs[0]).intValue());
 System.out.println ("name="+((String)attrs[1]));
 System.out.println ("address="+((String)attrs[2]));
 }
 else if (sqlname.equals ("HR.STUDENT"))
 {
 System.out.println ("ssn="+((BigDecimal)attrs[0]).intValue());
 System.out.println ("name="+((String)attrs[1]));
 System.out.println ("address="+((String)attrs[2]));
 System.out.println ("deptid="+((BigDecimal)attrs[3]).intValue());
 System.out.println ("major="+((String)attrs[4]));
 }
 else if (sqlname.equals ("HR.PARTTIMESTUDENT"))
 {
 System.out.println ("ssn="+((BigDecimal)attrs[0]).intValue());
 System.out.println ("name="+((String)attrs[1]));
 System.out.println ("address="+((String)attrs[2]));
 System.out.println ("deptid="+((BigDecimal)attrs[3]).intValue());
 System.out.println ("major="+((String)attrs[4]));

Chapter 13
Object-Type Inheritance

13-27

 System.out.println ("numHours="+((BigDecimal)attrs[5]).intValue());
 }
 else
 throw new Exception ("Invalid type name: "+sqlname);
 }
}
rset.close ();
stmt.close ();
conn.close ();

13.4.7 Inheritance Metadata Methods
Oracle JDBC drivers provide a set of metadata methods to access inheritance
properties. The inheritance metadata methods are defined in the
oracle.sql.StructDescriptor and oracle.jdbc.StructMetaData classes.

The StructMetaData class provides inheritance metadata methods for subtype
attributes. The getMetaData method of the StructDescriptor class returns an
instance of StructMetaData of the type. The StructMetaData class contains the
following inheritance metadata methods:

13.5 About Describing an Object Type
Oracle JDBC includes functionality to retrieve information about a structured object
type regarding its attribute names and types. This is similar conceptually to retrieving
information from a result set about its column names and types, and in fact uses an
almost identical method.

This section covers the following topics:

• Functionality for Getting Object Metadata

• Retrieving Object Metadata

13.5.1 Functionality for Getting Object Metadata
The oracle.sql.StructDescriptor class includes functionality to retrieve metadata
about a structured object type. The StructDescriptor class has a getMetaData
method with the same functionality as the standard getMetaData method available in
result set objects. It returns a set of attribute information, such as attribute names and
types. Call this method on a StructDescriptor object to get metadata about the
Oracle object type that the StructDescriptor object describes.

The signature of the StructDescriptor class getMetaData method is the same as the
signature specified for getMetaData in the standard ResultSet interface. The signature
is as follows:

ResultSetMetaData getMetaData() throws SQLException

However, this method actually returns an instance of oracle.jdbc.StructMetaData, a
class that supports structured object metadata in the same way that the standard
java.sql.ResultSetMetaData interface specifies support for result set metadata.

The following method is also supported by StructMetaData:

String getOracleColumnClassName(int column) throws SQLException

Chapter 13
About Describing an Object Type

13-28

This method returns the fully qualified name of the oracle.sql.Datum subclass whose
instances are manufactured if the OracleResultSet interface getOracleObject
method is called to retrieve the value of the specified attribute. For example,
oracle.sql.NUMBER.

To use the getOracleColumnClassName method, you must cast the
ResultSetMetaData object, which that was returned by the getMetaData method, to
StructMetaData.

• Note:

In all the preceding method signatures, column is something of a
misnomer. Where you specify a value of 4 for column, you really refer to
the fourth attribute of the object.

13.5.2 Retrieving Object Metadata
Use the following steps to obtain metadata about a structured object type:

1. Create or acquire a StructDescriptor instance that describes the relevant
structured object type.

2. Call the getMetaData method on the StructDescriptor instance.

3. Call the metadata getter methods, getColumnName, getColumnType, and
getColumnTypeName, as desired.

Note:

If one of the structured object attributes is itself a structured object,
repeat steps 1 through 3.

Example 13-1 Example

The following method shows how to retrieve information about the attributes of a
structured object type. This includes the initial step of creating a StructDescriptor
instance.

//
// Print out the ADT's attribute names and types
//
void getAttributeInfo (Connection conn, String type_name) throws SQLException
{

 // get the type descriptor
 StructDescriptor desc = StructDescriptor.createDescriptor (type_name, conn);

 // get type metadata
 ResultSetMetaData md = desc.getMetaData ();

 // get # of attrs of this type
 int numAttrs = desc.length ();

 // temporary buffers
 String attr_name;

Chapter 13
About Describing an Object Type

13-29

 int attr_type;
 String attr_typeName;

 System.out.println ("Attributes of "+type_name+" :");
 for (int i=0; i<numAttrs; i++)
 {
 attr_name = md.getColumnName (i+1);
 attr_type = md.getColumnType (i+1);
 System.out.println (" index"+(i+1)+" name="+attr_name+" type="+attr_type);

 // drill down nested object
 if (attrType == OracleTypes.STRUCT)
 {
 attr_typeName = md.getColumnTypeName (i+1);

 // recursive calls to print out nested object metadata
 getAttributeInfo (conn, attr_typeName);
 }
 }
}

Chapter 13
About Describing an Object Type

13-30

14
Working with LOBs and BFILEs

This chapter describes how to use Java Database Connectivity (JDBC) to access and
manipulate large objects (LOB) using either the data interface or the locator interface.

In previous releases, Oracle JDBC drivers required Oracle extensions to standard
JDBC types to perform many operations in the Oracle Database. JDBC 3.0 reduced
the requirement of using Oracle extensions and JDBC 4.0 nearly eliminated this
limitation. Refer to the Javasoft Javadoc for the java.sql and javax.sql packages,
and to the Oracle JDBC Javadoc for details on Oracle extensions.

This chapter contains the following sections:

• The LOB Data Types

• Oracle SecureFiles

• Data Interface for LOBs

• LOB Locator Interface

• About Working With Temporary LOBs

• About Opening Persistent LOBs with the Open and Close Methods

• About Working with BFILEs

Note:

• In Oracle Database 12c Release 1 (12.1), the Oracle JDBC drivers
support the JDBC 4.0 java.sql.NClob interface.

• In Oracle Database 10g, the Oracle JDBC drivers support the JDBC 3.0
java.sql.Clob and java.sql.Blob interfaces. Certain Oracle extensions
made in oracle.sql.CLOB and oracle.sql.BLOB in earlier Oracle
Database releases are no longer necessary and are deprecated. You
should port your application to the standard JDBC 3.0 interface.

• Prior to Oracle Database 10g, the maximum size of a LOB was 232

bytes. This restriction has been removed since Oracle Database 10g,
and the maximum size is limited to the size of available physical storage.
The Java LOB application programming interface (API) has not changed.

14.1 The LOB Data Types
Prior to Oracle Database 10g, the maximum size of a LOB was 2^32 bytes. This
restriction has been removed since Oracle Database 10g, and the maximum size is
limited to the size of available physical storage.

The Oracle database supports the following four LOB data types:

14-1

• Binary large object (BLOB)

This data type is used for unstructured binary data.

• Character large object (CLOB)

This data type is used for character data.

• National character large object (NCLOB)

This data type is used for national character data.

• BFILE

This data type is used for large binary data objects stored in operating system
files, outside of database tablespaces.

BLOBs, CLOBs, and NCLOBs are stored persistently in a database tablespace and all
operations performed on these data types are under transaction control.

BFILE is an Oracle proprietary data type that provides read-only access to data
located outside the database tablespaces on tertiary storage devices, such as hard
disks, network mounted files systems, CD-ROMs, PhotoCDs, and DVDs. BFILE data
is not under transaction control and is not stored by database backups.

The PL/SQL language supports the LOB data types and the JDBC interface allows
passing IN parameters to PL/SQL procedures or functions, and retrieval of OUT
parameters or returns. PL/SQL uses value semantics for all data types including
LOBs, but reference semantics only for BFILE.

14.2 Oracle SecureFiles
Oracle Database 11g Release 1 (11.1) introduced Oracle SecureFiles, a completely
new storage for LOBs.

Following Features of Oracle SecureFiles are transparently available to JDBC
programs through the existing APIs:

• SecureFile compression enables users to compress data to save disk space.

• SecureFile encryption introduces a new encryption facility that allows for random
reads and writes of the encrypted data.

• Deduplication enables Oracle database to automatically detect duplicate LOB data
and conserve space by storing only one copy of data.

• LOB data path optimization includes logical cache above storage layer and new
caching modes.

• High performance space management.

The setLobOptions and getLobOptions APIs are described in the PL/SQL Packages
and Types Reference, and may be accessed from JDBC through callable statements.

Following Oracle SecureFiles features are implemented in the database through
updates to the existing APIs:

• isSecureFile Method

• Zero-Copy I/O for Oracle SecureFiles

Chapter 14
Oracle SecureFiles

14-2

isSecureFile Method

You can check whether or not your BLOB or CLOB data uses Oracle SecureFile storage.
To achieve this, use the following method from oracle.jdbc.OracleBlob or
oracle.jdbc.OracleClob class:

public boolean isSecureFile() throws SQLException

If this method returns true, then your data uses SecureFile storage.

Zero-Copy I/O for Oracle SecureFiles

With the release of Oracle Database 12c Release 2 (12.2) JDBC Drivers, the
performance of Oracle SecureFiles operations is greatly improved because Oracle Net
Services now uses zero-copy I/O framework for better buffer management.

Oracle Database 11g Release 2 introduced a new connection property
oracle.net.useZeroCopyIO. This property can be used to enable or disable the zero-
copy I/O protocol. This connection property is defined as the following constant:
OracleConnection.CONNECTION_PROPERTY_THIN_NET_USE_ZERO_COPY_IO. If you want
to disable the zero-copy I/O framework, then set the value of this connection property
to false. By default, the value of this connection property is true.

14.3 Data Interface for LOBs
This section describes the following topics:

• Streamlined Mechanism

• Input

• Output

• CallableSatement and IN OUT Parameter

• Size Limitations

14.3.1 Streamlined Mechanism
The Oracle Database 12c Release 1 (12.1) JDBC drivers provide a streamlined
mechanism for writing and reading the entire LOB contents. This is referred to as the
data interface. The data interface uses standard JDBC methods such as getString
and setBytes to read and write LOB data. It is simpler to code and faster in many
cases. Unlike the standard java.sql.Blob, java.sql.Clob and java.sql.NClob
interfaces, it does not provide random access capability, that is, it does not use LOB
locator and cannot access data beyond 2147483648 elements.

14.3.2 Input
In Oracle Database 12c Release 1 (12.2), the setBytes, setBinaryStream, setString,
setCharacterStream, and setAsciiStream methods of PreparedStatement are
extended to enhance the ability to work with BLOB, CLOB, and NCLOB target columns. If
the length of the data is known, then for better performance, use the versions of
setBinaryStream or setCharacterStream methods that accept the data length as a
parameter.

Chapter 14
Data Interface for LOBs

14-3

Note:

This enhancement does not affect the BFILE data because it is read-only.

For the JDBC Oracle Call Interface (OCI) and Thin drivers, there is no limitation on the
size of the byte array or String, and no limitation on the length specified for the
stream functions, except the limits imposed by the Java language.

Note:

In Java, the array size is limited to positive Java int or 2147483648
elements.

For the server-side internal driver, currently there is a limitation of 32767 bytes for
operations on SQL statements, such as an INSERT statement. This limitation does not
apply for PL/SQL statements. There is a simple workaround for an INSERT statement,
where it is wrapped in a PL/SQL block in the following way:

BEGIN
 INSERT id, c INTO clob_tab VALUES(?,?);
END;

You must bear in mind the following automatic switching of the input mode for large
data:

• There are three input modes as follows:

– Direct binding

This binding is limited in size but most efficient. It places the data for all input
columns inline in the block of data sent to the server. All data, including
multiple executions of a batch, is sent in a single network operation.

– Stream binding

This binding places data at the end. It limits batch size to one and may require
multiple round trips to complete.

– LOB binding

This binding creates a temporary LOB, copies data to the LOB, and binds the
LOB locator. The temporary LOB is automatically freed after execution. The
operation to create the temporary LOB and then to writing to the LOB requires
multiple round trips. The input of the locators may be batched.

• For SQL statements:

– The setBytes and setBinaryStream methods use direct binding for data less
than 32767 bytes.

– The setBytes and setBinaryStream methods use stream binding for data
larger than 32767 bytes.

– In JDBC 4.0 has introduced new forms of the setAsciiStream,
setBinaryStream, and setCharacterStream methods. The form, where the
methods take a long argument as length, uses LOB binding for length larger

Chapter 14
Data Interface for LOBs

14-4

than 2147483648. The form, where the length is not specified, always uses
LOB binding.

– The setString, setCharacterStream, and setAsciiStream methods use
direct binding for data smaller than 32767 characters.

– The setString, setCharacterStream, and setAsciiStream methods use
stream binding for data larger than 32766 characters.

– The new form of setCharacterStream method, which takes a long argument
for length, uses LOB binding for length larger than 2147483647, in JDBC 4.0.
The form, where the length is not specified, always uses LOB binding.

• PL/SQL statements

– The setBytes and setBinary stream methods use direct binding for data less
than 32767 bytes.

Note:

If the underlying Database is Oracle Database release 10.x, then this
data size limit is 32512 bytes, though you are working with Oracle
Database 12c Release 1 (12.1) JDBC drivers.

– The setBytes and setBinaryStream methods use LOB binding for data larger
than 32766 bytes.

– The setString, setCharacterStream, and setAsciiStream methods use
direct binding for data smaller than 32767 bytes in the database character set.

Note:

If the underlying Database is Oracle Database release 10.x, then this
data size limit is 32512 bytes, though you are working with Oracle
Database 12c Release 1 (12.1) JDBC drivers.

– The setString, setCharacterStream, and setAsciiStream methods use LOB
binding for data larger than 32766 bytes in the database character set.

The automatic switching of the input mode for large data has impact on certain
programs. Previously, you used to get ORA-17157 errors for attempts to use setString
method for String values larger than 32766 characters. Now, depending on the type
of the target parameter, an error may occur while the statement is executed or the
operation may succeed.

Another impact is that the automatic switching may result in additional server-side
parsing to adapt to the change in the parameter type. This would result in a
performance effect, if the data sizes vary above and below the limit for repeated
executions of the statement. Switching to the stream modes will effect batching as
well.

Forcing conversion to LOB

The setBytesForBlob and setStringForClob methods, present in the
oracle.jdbc.OraclePreparedStatement interface, use LOB binding for any data size.

Chapter 14
Data Interface for LOBs

14-5

The SetBigStringTryClob connection property of Oracle Database 10g Release 1 is
no longer used or needed.

14.3.3 Output
The getBytes, getBinaryStream, getString, getCharacterStream, and
getAsciiStream methods of ResultSet and CallableStatement are extended to work
with BLOB, CLOB, and BFILE columns or OUT parameters. These methods work for any
LOB of length less than 2147483648.

Note:

The getString and getNString methods cannot be used for retrieving BLOB
column values.

The data interface operates by accessing the LOB locators within the driver and is
transparent to application programming. It works with any supported version of the
database, that is, Oracle Database 10.1.x and later. For Oracle Database 11g Release
1 or later versions, LOB prefetching may be used to reduce or eliminate any additional
database round trips required.

You can read BFILE data and read and write BLOB or CLOB data using the
defineColumnType method. To read, use defineColumnType(nn,
Types.LONGVARBINARY) or defineColumnType(nn,Types.LONGVARCHAR) method on the
column. This produces a direct stream on the data as if it were a LONG RAW or LONG
column. This technique is limited to Oracle Database 10g release 1 (10.1) and later.

Related Topics

• New Methods for National Character Set Type Data in JDK 6

• LOB Locator Interface

14.3.4 CallableSatement and IN OUT Parameter
It is a PL/SQL requirement that the Java types used as input and output for an IN OUT
parameter must be the same. The automatic switching of types done by the
extensions described in this chapter may cause problems with this.

Consider that you have an IN OUT CLOB parameter of a stored procedure and you wish
to use setString method for setting the value for this parameter. For any IN and OUT
parameter, the binds must be of the same type. The automatic switching of the input
mode will cause problems unless you are sure of the data sizes. For example, if it is
known that neither the input nor output data will ever be larger than 32766 bytes, then
you could use setString method for the input parameter and register the OUT
parameter as Types.VARCHAR and use getString method for the output parameter.

A better solution is to change the stored procedure to have separate IN and OUT
parameters. That is, if you have:

CREATE PROCEDURE clob_proc(c IN OUT CLOB);

then, change it to:

Chapter 14
Data Interface for LOBs

14-6

CREATE PROCEDURE clob_proc(c_in IN CLOB, c_out OUT CLOB);

Another workaround is to use a container block to make the call. The clob_proc
procedure can be wrapped with a Java String to use for the prepareCall statement,
as follows:

"DECLARE c_temp; BEGIN c_temp := ?; clob_proc(c_temp); ? := c_temp; END;"

In either case, you may use the setString method on the first parameter and the
registerOutParameter method with Types.CLOB on the second.

14.3.5 Size Limitations
Be aware of the effect on the performance of the Java memory management system
due to creation of very large byte array or String. Read the information provided by
your Java virtual machine (JVM) vendor about the impact of very large data elements
on memory management, and consider using the stream interfaces instead.

14.4 LOB Locator Interface
Locators are small data structures, which contain information that may be used to
access the actual data of the LOB. In a database table, the locator is stored directly in
the table, while the data may be in the table or in separate storage. It is common to
use separate tablespaces for large LOBs.

In JDBC 4.0, LOBs should be read or written using the interfaces java.sql.Blob,
java.sql.Clob, and java.sql.NClob. These provide random access to the data in the
LOB.

The Oracle implementation classes oracle.sql.BLOB, oracle.sql.CLOB, and
oracle.sql.NCLOB store the locator and access the data with it. The oracle.sql.BLOB
and oracle.sql.CLOB classes implement the java.sql.Blob and java.sql.Clob
interfaces respectively. In ojdbc6.jar, oracle.sql.NCLOB implements
java.sql.NClob, but in ojdbc5.jar, it implements the java.sql.Clob interface.

Note:

Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.BLOB
and oracle.sql.CLOB classes are deprecated and replaced with the
oracle.jdbc.OracleBlob and oracle.jdbc.OracleClob interfaces. Oracle
recommends you to use the methods available in the java.sql package,
where possible, for standard compatibility and methods available in the
oracle.jdbc package for Oracle specific extensions. Refer to MoS Note
1364193.1 for more information about these interface.

In Oracle Database 12c Release 1 (12.1), the Oracle JDBC drivers support the JDBC
4.0 java.sql.NClob interface in ojdbc6.jar and ojdbc7.jar, which are compiled with
JDK 6 (must be used with JRE 6) and JDK 7 (must be used with JRE 7) respectively.

In contrast, oracle.sql.BFILE is an Oracle extension, without a corresponding
java.sql interface.

Chapter 14
LOB Locator Interface

14-7

See Also:

The JDBC Javadoc for more details.

LOB prefetching

For Oracle Database 12c Release 1 (12.1) JDBC drivers, the number of round trips is
reduced by prefetching the metadata such as the LOB length and the chunk size as
well as the beginning of the LOB data along with the locator during regular fetch
operations. If you select LOB columns into a result set, some or all of the data is
prefetched to the client, when the locator is fetched. It saves the first roundtrip to
retrieve data by deferring all preceding operations until fetching from the locator.

Note:

LOB Prefetching is inversely proportional to the size of the LOB data, that is,
the benefits of prefetching are more for small LOBs and less for larger LOBs.

The prefetch size is specified in bytes for BLOBs and in characters for CLOBs. It can
be specified by setting the connection property
oracle.jdbc.defaultLobPrefetchSize. The value of this property can be overridden
in the following two ways:

• At the statement level: By using the
oracle.jdbc.OracleStatement.setLobPrefetchSize(int) method

• At the column level: By using the form of defineColumnType method that takes
length as argument

The default prefetch size is 4000.

Note:

Be aware of the possible memory consumption while setting large LOB
prefetch sizes in combination with a large row prefetch size and a large
number of LOB columns.

See Also:

The JDBC Javadoc for more details

New LOB APIs in JDBC 4.0

Oracle Database 11g Release 1 introduced the java.sql.NClob interface. The Oracle
drivers implement the oracle.sql.NCLOB and java.sql.NCLOB interface in both
ojdbc6.jar and ojdbc7.jar.

Chapter 14
LOB Locator Interface

14-8

The Oracle drivers implement the new factory methods, createBlob, createClob, and
createNClob in the java.sql.Connection interface to create temporary LOBs.

Starting from JDK 6, the java.sql.Blob, java.sql.Clob, and java.sql.NClob
interfaces have a new method free to free an LOB and release the associated
resources. The Oracle drivers use this method to free an LOB, if it is a temporary LOB.

14.5 About Working With Temporary LOBs
You can use temporary LOBs to store transient data. The data is stored in temporary
table space rather than regular table space. You should free temporary LOBs after you
no longer need them. If you do not, then the space the LOB consumes in temporary
table space will not be reclaimed.

You can insert temporary LOBs into a table. When you do this, a permanent copy of
the LOB is created and stored.

Note:

Inserting a temporary LOB may be preferable in some situations. For
example, when the LOB data is relatively small and the overhead of copying
the data is less than the cost of a database round trip to retrieve the empty
locator. Remember that the data is initially stored in the temporary table
space on the server and then moved into permanent storage.

You create a temporary LOB with the static method createTemporary, defined in
both the oracle.sql.BLOB and oracle.sql.CLOB classes. You free a temporary LOB
with the freeTemporary method.

You can also create a temporary LOB/CLOB or NCLOB by using the connection
factory methods available in JDBC 4.0.

You can test whether a LOB is temporary or not by calling the isTemporary method. If
the LOB was created by calling the createTemporary method, then the isTemporary
method returns true, else it returns false.

You can free a temporary LOB by calling the freeTemporary method. Free any
temporary LOBs before ending the session or call.

Chapter 14
About Working With Temporary LOBs

14-9

Note:

• If you do not free a temporary LOB, then it will make the storage used by
that LOB in the database unavailable. Frequent failure to free temporary
LOBs will result in filling up temporary table space with unavailable LOB
storage.

• When fetching data from a ReultSet with columns that are temporary
LOBs, use getClob or getBlob methods instead of getString or
getBytes.

• The JDBC 4.0 method free, present in java.sql.Blob, java.sql.Clob,
and java.sql.NClob interfaces, supercedes the freeTemporary method.

Related Topics

• LOB Creation

14.6 About Opening Persistent LOBs with the Open and
Close Methods

This section discusses how to open and close your LOBs. The JDBC implementation
of this functionality is provided using the following methods of oracle.sql.BLOB and
oracle.sql.CLOB interfaces:

• void open (int mode)

• void close()

• boolean isOpen()

Note:

• Starting from Oracle Database 12c Release 1 (12.1), the
oracle.sql.BLOB and oracle.sql.CLOB classes are deprecated and
replaced with the oracle.jdbc.OracleBlob and
oracle.jdbc.OracleClob interfaces. Oracle recommends you to use the
methods available in the java.sql package, where possible, for
standard compatibility and methods available in the oracle.jdbc
package for Oracle specific extensions. Refer to MoS Note 1364193.1
for more information about these interface.

• You do not have to necessarily open and close your LOBs. You may
choose to open and close them for performance reasons.

If you do not wrap LOB operations inside an Open/Close call operation, then each
modification to the LOB will implicitly open and close the LOB, thereby firing any
triggers on a domain index. Note that in this case, any domain indexes on the LOB will
become updated as soon as LOB modifications are made. Therefore, domain LOB
indexes are always valid and may be used at any time within the same transaction.

Chapter 14
About Opening Persistent LOBs with the Open and Close Methods

14-10

If you wrap your LOB operations inside the Open/Close call operation, then triggers will
not be fired for each LOB modification. Instead, the trigger on domain indexes will be
fired at the Close call. For example, you might design your application so that domain
indexes are not be updated until you call the close method. However, this means that
any domain indexes on the LOB will not be valid in-between the Open/Close calls.

You open a LOB by calling the open or open(int) method. You may then read and
write the LOB without any triggers associated with that LOB firing. When you finish
accessing the LOB, close the LOB by calling the close method. When you close the
LOB, any triggers associated with the LOB will fire.

You can check if a LOB is open or closed by calling the isOpen method. If you open
the LOB by calling the open(int) method, then the value of the argument must be
either MODE_READONLY or MODE_READWRITE, as defined in the oracle.sql.BLOB and
oracle.sql.CLOB classes. If you open the LOB with MODE_READONLY, then any attempt
to write to the LOB will result in a SQL exception.

Note:

• An error occurs if you commit the transaction before closing all LOBs
that were opened by the transaction. The openness of the open LOBs is
discarded, but the transaction is successfully committed. Hence, all the
changes made to the LOB and non-LOB data in the transaction are
committed, but the triggers for domain indexing are not fixed.

• The open and close methods apply only to persistent LOBs. The close
method is not similar to the free or freeTemporary methods used for
temporary LOBs. The free and freeTemporary methods release storage
and make a LOB unusable. On the other hand, the close method
indicates to the database that a modification on a LOB is complete, and
triggers should be fired and indexes should be updated. A LOB is still
usable after a call to the close method.

14.7 About Working with BFILEs
This section describes how to read data from BFILEs, using file locators. This section
covers the following topics:

• Retrieving BFILE Locators

• Writing to BFILES

Retrieving BFILE Locators

The BFILE data type and oracle.sql.BFILE classes are Oracle proprietary. So, there
is no standard interface for them. You must use Oracle extensions for this type of data.

If you have a standard JDBC result set or callable statement object that includes
BFILE locators, then you can access the locators by using the standard result set
getObject method. This method returns an oracle.sql.BFILE object.

You can also access the locators by casting your result set to OracleResultSet or
your callable statement to OracleCallableStatement and using the getOracleObject
or getBFILE method.

Chapter 14
About Working with BFILEs

14-11

Note:

If you are using getObject or getOracleObject methods, then remember to
cast the output, as necessary.

Once you have a locator, you can access the BFILE data via the API in
oracle.sql.BFILE. These APIs are similar to the read methods of the java.sql.BLOB
interface.

Writing to BFILES

You cannot write data to the contents of the BFILE, but you can use an instance of
oracle.sql.BFILE as input to a SQL statement or to a PL/SQL procedure. You can
achieve this by performing one of the following:

• Use the standard setObject method.

• Cast the statement to OraclePreparedStatement or OracleCallableStatement,
and use the setOracleObject or setBFILE method. These methods take the
parameter index and an oracle.sql.BFILE object as input.

Note:

– There is no standard java.sql interface for BFILEs.

– Use the getBFILE methods in the OracleResultSet and
OracleCallableStatement interfaces to retrieve an
oracle.sql.BFILE object. The setBFILE methods in
OraclePreparedStatement and OracleCallableStatement
interfaces accept oracle.sql.BFILE object as an argument. Use
these methods to write to a BFILE.

– Oracle recommends that you use the getBFILE, setBFILE, and
updateBFILE methods instead of the getBfile, setBfile, and
updateBfile methods. For example, use the setBFILE method
instead of the setBfile method.

BFILEs are read-only. The body of the data resides in the operating system (OS) file
system and can be written to using only OS tools and commands. You can create a
BFILE for an existing external file by executing the appropriate SQL statement either
from JDBC or by using any other way to execute SQL. However, you cannot create an
OS file that a BFILE would refer to by SQL or JDBC. Those are created only externally
by a process that has access to server file systems.

Note:

The code examples present in this chapter, in the earlier versions of this
guide, have been removed in favor of references to the sample code
available for download on OTN.

Chapter 14
About Working with BFILEs

14-12

15
Using Oracle Object References

This chapter describes the standard Java Database Connectivity (JDBC) that let you
access and manipulate object references.

This section discusses the following topics:

• Oracle Extensions for Object References

• Retrieving and Passing an Object Reference

• Accessing and Updating Object Values Through an Object Reference

15.1 Oracle Extensions for Object References
Oracle supports the use of references to database objects. Oracle JDBC provides
support for object references as:

• Columns in a SELECT clause

• IN or OUT bind variables

• Attributes in an Oracle object

• Elements in a collection type object

In SQL, an object reference (REF) is strongly typed. For example, a reference to an
EMPLOYEE object would be defined as an EMPLOYEE REF, not just a REF.

When you select an object reference, be aware that you are retrieving only a pointer to
an object, not the object itself. You have the choice of materializing the reference as a
java.sql.Ref instance for portability, or materializing it as an instance of a custom
Java class that you have created in advance, which is strongly typed. Custom Java
classes used for object references are referred to as custom reference classes and
must implement the oracle.jdbc.OracleData interface.

You can retrieve a REF instance through a result set or callable statement object, and
pass an updated REF instance back to the database through a prepared statement or
callable statement object. The REF class includes functionality to get and set
underlying object attribute values, and get the SQL base type name of the underlying
object.

Custom reference classes include this same functionality, as well as having the
advantage of being strongly typed. This can help you find coding errors during
compilation that might not otherwise be discovered until run time.

15-1

Note:

• If you are using the oracle.jdbc.OracleData interface for custom object
classes, then you will presumably use OracleData for corresponding
custom reference classes as well. However, if you are using the
standard java.sql.SQLData interface for custom object classes, then
you can only use weak Java types for references. The SQLData interface
is for mapping SQL object types only.

• You can create and retrieve REF objects in your JDBC application only by
running SQL statements. There is no JDBC-specific functionality for
creating and retrieving REF objects.

• You cannot have a reference to an array, even though arrays, like
objects, are structured types.

15.2 Retrieving and Passing an Object Reference
This section discusses JDBC functionality for retrieving and passing object references.
It covers the following topics:

• Retrieving an Object Reference from a Result Set

• Retrieving an Object Reference from a Callable Statement

• Passing an Object Reference to a Prepared Statement

15.2.1 Retrieving an Object Reference from a Result Set
To demonstrate how to retrieve object references, the following example first defines
an Oracle object type ADDRESS, which is then referenced in the PEOPLE table:

create type ADDRESS as object
 (street_name VARCHAR2(30),
 house_no NUMBER);

create table PEOPLE
 (col1 VARCHAR2(30),
 col2 NUMBER,
 col3 REF ADDRESS);

The ADDRESS object type has two attributes: a street name and a house number. The
PEOPLE table has three columns: a column for character data, a column for numeric
data, and a column containing a reference to an ADDRESS object.

To retrieve an object reference, follow these general steps:

1. Use a standard SQL SELECT statement to retrieve the reference from a database
table REF column.

2. Use getRef to get the address reference from the result set into an OracleRef
instance.

3. Let Address be the Java custom class corresponding to the SQL object type
ADDRESS.

Chapter 15
Retrieving and Passing an Object Reference

15-2

4. Add the correspondence between the Java class Address and the SQL type
ADDRESS to your type map.

5. Use the getObject method to retrieve the contents of the Address reference. Cast
the output to Address.

The PEOPLE database table is defined earlier in this section. The code for the preceding
steps, except the step of adding Address to the type map, is as follows:

ResultSet rs = stmt.executeQuery("SELECT col3 FROM PEOPLE");
while (rs.next())
{
 OracleRef ref = rs.getRef(1);
 Address a = (Address)ref.getObject();
}

Note:

In the preceding code, stmt is a previously defined statement object.

15.2.2 Retrieving an Object Reference from a Callable Statement
To retrieve an object reference as an OUT parameter in PL/SQL blocks, you must
register the bind type for your OUT parameter.

1. Cast your callable statement to OracleCallableStatement, as follows:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}");

2. Register the OUT parameter with the following form of the registerOutParameter
method:

ocs.registerOutParameter (int param_index, int sql_type, String sql_type_name);

param_index is the parameter index and sql_type is the SQL type code. The
sql_type_name is the name of the structured object type that this reference is used
for. For example, if the OUT parameter is a reference to an ADDRESS object, then
ADDRESS is the sql_type_name that should be passed in.

3. Run the call, as follows:

ocs.execute();

15.2.3 Passing an Object Reference to a Prepared Statement
Pass an object reference to a prepared statement in the same way as you would pass
any other SQL type. Use either the setObject method or the setREF method of a
prepared statement object.

Use a prepared statement to update an address reference based on ROWID, as follows:

PreparedStatement pstmt =
 conn.prepareStatement ("update PEOPLE set ADDR_REF = ? where ROWID = ?");
pstmt.setRef (1, addr_ref);
 pstmt.setRowId (2, rowid);

Chapter 15
Retrieving and Passing an Object Reference

15-3

15.3 Accessing and Updating Object Values Through an
Object Reference

You can use the Ref object setObject method to update the value of an object in the
database through an object reference. To do this, you must first retrieve the reference
to the database object and create a Java object that corresponds to the database
object.

For example, you can use the code in the "Retrieving and Passing an Object
Reference" section to retrieve the reference to a database ADDRESS object, as shown in
the following code snippet:

ResultSet rs = stmt.executeQuery("SELECT col3 FROM PEOPLE");
if (rs.next())
{
 Ref ref = rs.getRef(1);
 Address a = (Address)ref.getObject();
}

Then, you can create a Java Address object that corresponds to the database ADDRESS
object. Use the setObject method of the Ref interface to set the value of the database
object, as follows:

Address addr = new Address(...);
ref.setObject(addr);

Here, the setValue method updates the database ADDRESS object immediately.

Related Topics

• Retrieving and Passing an Object Reference

Chapter 15
Accessing and Updating Object Values Through an Object Reference

15-4

16
Working with Oracle Collections

This chapter describes Oracle extensions to standard Java Database Connectivity
(JDBC) that let you access and manipulate Oracle collections, which map to Java
arrays, and their data. The following topics are discussed:

Note:

Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.ARRAY
class is deprecated and replaced with the oracle.jdbc.OracleArray
interface, which is a part of the oracle.jdbc package. Oracle recommends
you to use the methods available in the java.sql package, where possible,
for standard compatibility and methods available in the oracle.jdbc package
for Oracle specific extensions. Refer to MoS Note 1364193.1 for more
information about the oracle.jdbc.OracleArray interface.

• Oracle Extensions for Collections

• Overview of Collection Functionality

• ARRAY Performance Extension Methods

• Creating and Using Arrays

• Using a Type Map to Map Array Elements

16.1 Oracle Extensions for Collections
This section covers the following topics:

• Overview of Oracle Collections

• Choices in Materializing Collections

• Creating Collections

• Creating Multilevel Collection Types

16.1.1 Overview of Oracle Collections
An Oracle collection, either a variable array (VARRAY) or a nested table in the
database, maps to an array in Java. JDBC 2.0 arrays are used to materialize Oracle
collections in Java. The terms collection and array are sometimes used
interchangeably. However, collection is more appropriate on the database side and
array is more appropriate on the JDBC application side.

Oracle supports only named collections, where you specify a SQL type name to
describe a type of collection. JDBC enables you to use arrays as any of the following:

• Columns in a SELECT clause

16-1

• IN or OUT bind variables

• Attributes in an Oracle object

• Elements of other arrays

16.1.2 Choices in Materializing Collections
In your application, you have the choice of materializing a collection as an instance of
the oracle.sql.ARRAY class, which is weakly typed, or materializing it as an instance
of a custom Java class that you have created in advance, which is strongly typed.
Custom Java classes used for collections are referred to as custom collection classes.
A custom collection class must implement the Oracle oracle.jdbc.OracleData
interface. In addition, the custom class or a companion class must implement
oracle.jdbc.OracleDataFactory. The standard java.sql.SQLData interface is for
mapping SQL object types only.

The oracle.sql.ARRAY class implements the standard java.sql.Array interface.

The ARRAY class includes functionality to retrieve the array as a whole, retrieve a
subset of the array elements, and retrieve the SQL base type name of the array
elements. However, you cannot write to the array, because there are no setter
methods.

Custom collection classes, as with the ARRAY class, enable you to retrieve all or part of
the array and get the SQL base type name. They also have the advantage of being
strongly typed, which can help you find coding errors during compilation that might not
otherwise be discovered until run time.

Note:

There is no difference in the code between accessing VARRAYs and
accessing nested tables. ARRAY class methods can determine if they are
being applied to a VARRAY or nested table, and respond by taking the
appropriate actions.

16.1.3 Creating Collections
Because Oracle supports only named collections, you must declare a particular VARRAY
type name or nested table type name. VARRAY and nested table are not types
themselves, but categories of types.

A SQL type name is assigned to a collection when you create it using the SQL CREATE
TYPE statement:

CREATE TYPE <sql_type_name> AS <datatype>;

A VARRAY is an array of varying size. It has an ordered set of data elements, and all
the elements are of the same data type. Each element has an index, which is a
number corresponding to the position of the element in the VARRAY. The number of
elements in a VARRAY is the size of the VARRAY. You must specify a maximum size
when you declare the VARRAY type. For example:

CREATE TYPE myNumType AS VARRAY(10) OF NUMBER;

Chapter 16
Oracle Extensions for Collections

16-2

This statement defines myNumType as a SQL type name that describes a VARRAY of
NUMBER values that can contain no more than 10 elements.

A nested table is an unordered set of data elements, all of the same data type. The
database stores a nested table in a separate table which has a single column, and the
type of that column is a built-in type or an object type. If the table is an object type,
then it can also be viewed as a multi-column table, with a column for each attribute of
the object type. You can create a nested table as follows:

CREATE TYPE myNumList AS TABLE OF integer;

This statement identifies myNumList as a SQL type name that defines the table type
used for the nested tables of the type INTEGER.

16.1.4 Creating Multilevel Collection Types
The most common way to create a new multilevel collection type in JDBC is to pass
the SQL CREATE TYPE statement to the execute method of the java.sql.Statement
class. The following code creates a one-level nested table, first_level, and a two-
levels nested table, second_level:

Connection conn = // make a database
 // connection
Statement stmt = conn.createStatement(); // open a database
 // cursor
stmt.execute("CREATE TYPE first_level AS TABLE OF NUMBER"); // create a nested
 // table of number
stmt.execute("CREATE TYPE second_level AS TABLE OF first_level"); // create a
 // two-levels nested table
... // other operations here
stmt.close(); // release the
 // resource
conn.close(); // close the
 // database connection

Once the multilevel collection types have been created, they can be used as both
columns of a base table as well as attributes of a object type.

Note:

Multilevel collection types are available only for Oracle9i and later.

16.2 Overview of Collection Functionality
You can obtain collection data in an array instance through a result set or callable
statement and pass it back as a bind variable in a prepared statement or callable
statement.

The oracle.sql.ARRAY class, which implements the standard java.sql.Array
interface, provides the necessary functionality to access and update the data of an
Oracle collection.

Chapter 16
Overview of Collection Functionality

16-3

This section covers Array Getter and Setter Methods. Use the following result set,
callable statement, and prepared statement methods to retrieve and pass collections
as Java arrays.

Note:

Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.ARRAY
class is deprecated and replaced with the oracle.jdbc.OracleArray
interface, which is a part of the oracle.jdbc package. Oracle recommends
you to use the methods available in the java.sql package, where possible,
for standard compatibility and methods available in the oracle.jdbc package
for Oracle specific extensions. Refer to MoS Note 1364193.1 for more
information about the oracle.jdbc.OracleArray interface.

Result Set and Callable Statement Getter Methods

The OracleResultSet and OracleCallableStatement interfaces support getARRAY
and getArray methods to retrieve ARRAY objects as output parameters, either as
oracle.sql.ARRAY instances or java.sql.Array instances. You can also use the
getObject method. These methods take as input a String column name or int
column index.

Note:

The Oracle JDBC drivers cache array and structure descriptors. This
provides enormous performance benefits; however, it means that if you
change the underlying type definition of an array type in the database, the
cached descriptor for that array type will become stale and your application
will receive a SQLException.

Prepared and Callable Statement Setter Methods

The OraclePreparedStatement and OracleCallableStatement classes support
setARRAY and setArray methods to take updated ARRAY objects as bind variables and
pass them to the database. You can also use the setObject method. These methods
take as input a String parameter name or int parameter index as well as an
oracle.sql.ARRAY instance or a java.sql.Array instance.

16.3 ARRAY Performance Extension Methods
This section discusses the following topics:

• About Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types

• ARRAY Automatic Element Buffering

• ARRAY Automatic Indexing

Chapter 16
ARRAY Performance Extension Methods

16-4

16.3.1 About Accessing oracle.sql.ARRAY Elements as Arrays of Java
Primitive Types

The oracle.sql.ARRAY class contains methods that return array elements as Java
primitive types. These methods enable you to access collection elements more
efficiently than accessing them as Datum instances and then converting each Datum
instance to its Java primitive value.

Note:

These specialized methods of the oracle.sql.ARRAY class are restricted to
numeric collections.

Each method using the first signature returns collection elements as an XXX[], where
XXX is a Java primitive type. Each method using the second signature returns a slice of
the collection containing the number of elements specified by count, starting at the
index location.

16.3.2 ARRAY Automatic Element Buffering
Oracle JDBC driver provides public methods to enable and disable buffering of ARRAY
contents.

The following methods are included with the oracle.sql.ARRAY class:

• setAutoBuffering

• getAutoBuffering

It is advisable to enable auto-buffering in a JDBC application when the ARRAY elements
will be accessed more than once by the getAttributes and getArray methods,
presuming the ARRAY data is able to fit into the Java Virtual Machine (JVM) memory
without overflow.

Note:

Buffering the converted elements may cause the JDBC application to
consume a significant amount of memory.

When you enable auto-buffering, the oracle.sql.ARRAY object keeps a local copy of
all the converted elements. This data is retained so that a second access of this
information does not require going through the data format conversion process.

16.3.3 ARRAY Automatic Indexing
If an array is in auto-indexing mode, then the array object maintains an index table to
hasten array element access.

Chapter 16
ARRAY Performance Extension Methods

16-5

The oracle.sql.ARRAY class contains the following methods to support automatic
array-indexing:

• setAutoIndexing(boolean)

• setAutoIndexing(boolean, int)

By default, auto-indexing is not enabled. For a JDBC application, enable auto-indexing
for ARRAY objects if random access of array elements may occur through the getArray
and getResultSet methods.

16.4 Creating and Using Arrays
This section discusses how to create array objects and how to retrieve and pass
collections as array objects, including the following topics.

• Creating ARRAY Objects

• Retrieving an Array and Its Elements

• Passing Arrays to Statement Objects

16.4.1 Creating ARRAY Objects

Note:

Oracle JDBC does not support the JDBC 4.0 method createArrayOf method
of java.sql.Connection interface. This method only allows anonymous
array types, while all Oracle array types are named. Use the Oracle specific
method oracle.jdbc.OracleConnection.createARRAY instead.

This section describes how to create ARRAY objects. This section covers the following
topics:

• Steps in Creating ARRAY Objects

• Example 16-1

Steps in Creating ARRAY Objects

Starting from Oracle Database 11g Release 1, you can use the createARRAY factory
method of oracle.jdbc.OracleConnection interface to create an array object. The
factory method for creating arrays has been defined as follows:

public ARRAY createARRAY(java.lang.String typeName,java.lang.Object elements)throws
SQLException

where, typeName is the name of the SQL type of the created object and elements is
the elements of the created object.

Perform the following to create an array:

1. Create a collection with the CREATE TYPE statement as follows:

CREATE TYPE elements AS varray(22) OF NUMBER(5,2);

Chapter 16
Creating and Using Arrays

16-6

The two possibilities for the contents of elements are:

• An array of Java primitives. For example, int[].

• An array of Java objects, such as xxx[], where xxx is the name of a Java
class. For example, Integer[].

Note:

The setARRAY, setArray, and setObject methods of the
OraclePreparedStatement class take an object of the type
oracle.sql.ARRAY as an argument, not an array of objects.

2. Construct the ARRAY object by passing the Java string specifying the user-defined
SQL type name of the array and a Java object containing the individual elements
you want the array to contain.

ARRAY array = oracle.jdbc.OracleConnection.createARRAY(sql_type_name, elements);

Note:

The name of the collection type is not the same as the type name of the
elements. For example:

CREATE TYPE person AS object
 (c1 NUMBER(5), c2 VARCHAR2(30));
CREATE TYPE array_of_persons AS varray(10)
 OF person;

In the preceding statements, the name of the collection type is
ARRAY_OF_PERSON. The SQL type name of the collection elements is PERSON.

Example 16-1 Creating Multilevel Collections

As with single-level collections, the JDBC application can create an oracle.sql.ARRAY
instance to represent a multilevel collection, and then send the instance to the
database. The same createARRAY factory method you use to create single-level
collections, can be used to create multilevel collections as well. To create a single-
level collection, the elements are a one dimensional Java array, while to create a
multilevel collection, the elements can be either an array of oracle.sql.ARRAY[]
elements or a nested Java array or the combinations.

The following code shows how to create collection types with a nested Java array:

// prepare the multilevel collection elements as a nested Java array
int[][][] elements = { {{1}, {1, 2}}, {{2}, {2, 3}}, {{3}, {3, 4}} };

// create the ARRAY using the factory method
ARRAY array = oracle.jdbc.OracleConnection.createARRAY(sql_type_name, elements);

Chapter 16
Creating and Using Arrays

16-7

16.4.2 Retrieving an Array and Its Elements
This section first discusses how to retrieve an ARRAY instance as a whole from a result
set, and then how to retrieve the elements from the ARRAY instance. This section
covers the following topics:

• About Retrieving the Array

• Data Retrieval Methods

• Comparing the Data Retrieval Methods

• Retrieving Elements of a Structured Object Array According to a Type Map

• Retrieving a Subset of Array Elements

• Retrieving Array Elements into an oracle.sql.Datum Array

• About Accessing Multilevel Collection Elements

16.4.2.1 About Retrieving the Array
You can retrieve a SQL array from a result set by casting the result set to
OracleResultSet and using the getARRAY method, which returns an
oracle.sql.ARRAY object. If you want to avoid casting the result set, then you can get
the data with the standard getObject method specified by the java.sql.ResultSet
interface and cast the output to oracle.sql.ARRAY.

16.4.2.2 Data Retrieval Methods
Once you have an ARRAY object, you can retrieve the data using one of these three
overloaded methods of the oracle.sql.ARRAY class:

• getArray

• getOracleArray

• getResultSet

Oracle also provides methods that enable you to retrieve all the elements of an array,
or a subset.

Note:

In case you are working with an array of structured objects, Oracle provides
versions of these three methods that enable you to specify a type map so
that you can choose how to map the objects to Java.

getOracleArray

The getOracleArray method is an Oracle-specific extension that is not specified in the
standard Array interface. The getOracleArray method retrieves the element values of
the array into a Datum[] array. The elements are of the oracle.sql.* data type
corresponding to the SQL type of the data in the original array.

Chapter 16
Creating and Using Arrays

16-8

For an array of structured objects, this method will use oracle.jdbc.OracleStruct
instances for the elements.

Oracle also provides a getOracleArray(index,count) method to get a subset of the
array elements.

getResultSet

The getResultSet method returns a result set that contains elements of the array
designated by the ARRAY object. The result set contains one row for each array
element, with two columns in each row. The first column stores the index into the array
for that element, and the second column stores the element value. In the case of
VARRAYs, the index represents the position of the element in the array. In the case of
nested tables, which are by definition unordered, the index reflects only the return
order of the elements in the particular query.

Oracle recommends using getResultSet when getting data from nested tables.
Nested tables can have an unlimited number of elements. The ResultSet object
returned by the method initially points at the first row of data. You get the contents of
the nested table by using the next method and the appropriate getXXX method. In
contrast, getArray returns the entire contents of the nested table at one time.

The getResultSet method uses the default type map of the connection to determine
the mapping between the SQL type of the Oracle object and its corresponding Java
data type. If you do not want to use the default type map of the connection, another
version of the method, getResultSet(map), enables you to specify an alternate type
map.

Oracle also provides the getResultSet(index,count) and
getResultSet(index,count,map) methods to retrieve a subset of the array elements.

getArray

The getArray method is a standard JDBC method that returns the array elements as a
java.lang.Object, which you can cast as appropriate. The elements are converted to
the Java types corresponding to the SQL type of the data in the original array.

Oracle also provides a getArray(index,count) method to retrieve a subset of the
array elements.

16.4.2.3 Comparing the Data Retrieval Methods
If you use getOracleArray to return the array elements, then the use by that method
of oracle.sql.Datum instances avoids the expense of data conversion from SQL to
Java. The non-character data inside the instance of a Datum class or any of its
subclass remains in raw SQL format.

If you use getResultSet to return an array of primitive data types, then the JDBC
driver returns a ResultSet object that contains, for each element, the index into the
array for the element and the element value. For example:

ResultSet rset = intArray.getResultSet();

In this case, the result set contains one row for each array element, with two columns
in each row. The first column stores the index into the array and the second column
stores the element value.

Chapter 16
Creating and Using Arrays

16-9

If the elements of an array are of a SQL type that maps to a Java type, then getArray
returns an array of elements of this Java type. The return type of the getArray method
is java.lang.Object. Therefore, the result must be cast before it can be used.

BigDecimal[] values = (BigDecimal[]) intArray.getArray();

Here intArray is an oracle.sql.ARRAY, corresponding to a VARRAY of type NUMBER.
The values array contains an array of elements of type java.math.BigDecimal,
because the SQL NUMBER data type maps to Java BigDecimal, by default, according to
Oracle JDBC drivers.

Note:

Using BigDecimal is a resource-intensive operation in Java. Because Oracle
JDBC maps numeric SQL data to BigDecimal by default, using getArray
may impact performance, and is not recommended for numeric collections.

16.4.2.4 Retrieving Elements of a Structured Object Array According to a Type
Map

By default, if you are working with an array whose elements are structured objects,
and you use getArray or getResultSet, then the Oracle objects in the array will be
mapped to their corresponding Java data types according to the default mapping. This
is because these methods use the default type map of the connection to determine the
mapping.

However, if you do not want default behavior, then you can use the getArray(map) or
getResultSet(map) method to specify a type map that contains alternate mappings. If
there are entries in the type map corresponding to the Oracle objects in the array, then
each object in the array is mapped to the corresponding Java type specified in the type
map. For example:

Object[] object = (Object[])objArray.getArray(map);

Where objArray is an oracle.sql.ARRAY object and map is a java.util.Map object.

If the type map does not contain an entry for a particular Oracle object, then the
element is returned as an oracle.jdbc.OracleStruct object.

The getResultSet(map) method behaves similarly to the getArray(map) method.

Related Topics

• Using a Type Map to Map Array Elements

16.4.2.5 Retrieving a Subset of Array Elements
If you do not want to retrieve the entire contents of an array, then you can use
signatures of getArray, getResultSet, and getOracleArray that let you retrieve a
subset. To retrieve a subset of the array, pass in an index and a count to indicate
where in the array you want to start and how many elements you want to retrieve. As
previously described, you can specify a type map or use the default type map for your
connection to convert to Java types. For example:

Chapter 16
Creating and Using Arrays

16-10

Object object = arr.getArray(index, count, map);
Object object = arr.getArray(index, count);

Similar examples using getResultSet are:

ResultSet rset = arr.getResultSet(index, count, map);
ResultSet rset = arr.getResultSet(index, count);

A similar example using getOracleArray is:

Datum[] arr = arr.getOracleArray(index, count);

Where arr is an oracle.sql.ARRAY object, index is type long, count is type int, and
map is a java.util.Map object.

Note:

There is no performance advantage in retrieving a subset of an array, as
opposed to the entire array.

16.4.2.6 Retrieving Array Elements into an oracle.sql.Datum Array
Use getOracleArray to return an oracle.sql.Datum[] array. The elements of the
returned array is of oracle.sql.* type that correspond to the SQL data type of the
elements of the original array. For example:

Datum arraydata[] = arr.getOracleArray();

arr is an oracle.sql.ARRAY object.

The following example assumes that a connection object conn and a statement object
stmt have already been created. In the example, an array with the SQL type name
NUM_ARRAY is created to store a VARRAY of NUMBER data. The NUM_ARRAY is in turn
stored in a table VARRAY_TABLE.

A query selects the contents of the VARRAY_TABLE. The result set is cast to
OracleResultSet. The getARRAY method is applied to it to retrieve the array data into
my_array, which is an oracle.sql.ARRAY object.

Because my_array is of type oracle.sql.ARRAY, you can apply the methods
getSQLTypeName and getBaseType to it to return the name of the SQL type of each
element in the array and its integer code.

The program then prints the contents of the array. Because the contents of NUM_ARRAY
are of the SQL data type NUMBER, the elements of my_array are of the type,
BigDecimal. Before you can use the elements, they must first be cast to BigDecimal.
In the for loop, the individual values of the array are cast to BigDecimal and printed to
standard output.

stmt.execute ("CREATE TYPE num_varray AS VARRAY(10) OF NUMBER(12, 2)");
stmt.execute ("CREATE TABLE varray_table (col1 num_varray)");
stmt.execute ("INSERT INTO varray_table VALUES (num_varray(100, 200))");

ResultSet rs = stmt.executeQuery("SELECT * FROM varray_table");
ARRAY my_array = ((OracleResultSet)rs).getARRAY(1);

Chapter 16
Creating and Using Arrays

16-11

// return the SQL type names, integer codes,
// and lengths of the columns
System.out.println ("Array is of type " + array.getSQLTypeName());
System.out.println ("Array element is of type code " + array.getBaseType());
System.out.println ("Array is of length " + array.length());

// get Array elements
BigDecimal[] values = (BigDecimal[]) my_array.getArray();

for (int i=0; i<values.length; i++)
{
 BigDecimal out_value = (BigDecimal) values[i];
 System.out.println(">> index " + i + " = " + out_value.intValue());
}

Note that if you use getResultSet to obtain the array, then you must would first get the
result set object, and then use the next method to iterate through it. Notice the use of
the parameter indexes in the getInt method to retrieve the element index and the
element value.

ResultSet rset = my_array.getResultSet();
while (rset.next())
{
 // The first column contains the element index and the
 // second column contains the element value
 System.out.println(">> index " + rset.getInt(1)+" = " + rset.getInt(2));
}

16.4.2.7 About Accessing Multilevel Collection Elements
The oracle.sql.ARRAY class provides three methods, which are overloaded, to access
collection elements. The JDBC drivers extend these methods to support multilevel
collections. These methods are:

• getArray method

• getOracleArray method

• getResultSet method

The getArray method returns a Java array that holds the collection elements. The
array element type is determined by the collection element type and the JDBC default
conversion matrix.

For example, the getArray method returns a java.math.BigDecimal array for
collection of SQL NUMBER. The getOracleArray method returns a Datum array that
holds the collection elements in Datum format. For multilevel collections, the getArray
and getOracleArray methods both return a Java array of oracle.sql.ARRAY
elements.

The getResultSet method returns a ResultSet object that wraps the multilevel
collection elements. For multilevel collections, the JDBC applications use the
getObject, getARRAY, or getArray method of the ResultSet class to access the
collection elements as instances of oracle.sql.ARRAY.

The following code shows how to use the getOracleArray, getArray, and
getResultSet methods:

Connection conn = ...; // make a JDBC connection
Statement stmt = conn.createStatement ();

Chapter 16
Creating and Using Arrays

16-12

ResultSet rset = stmt.executeQuery ("select col2 from tab2 where idx=1");

while (rset.next())
{
 ARRAY varray3 = (ARRAY) rset.getObject (1);
 Object varrayElems = varray3.getArray (1);
// access array elements of "varray3"
 Datum[] varray3Elems = (Datum[]) varrayElems;

 for (int i=0; i<varray3Elems.length; i++)
 {
 ARRAY varray2 = (ARRAY) varray3Elems[i];
 Datum[] varray2Elems = varray2.getOracleArray();
 // access array elements of "varray2"

 for (int j=0; j<varray2Elems.length; j++)
 {
 ARRAY varray1 = (ARRAY) varray2Elems[j];
 ResultSet varray1Elems = varray1.getResultSet();
 // access array elements of "varray1"

 while (varray1Elems.next())
 System.out.println ("idx="+varray1Elems.getInt(1)+"
 value="+varray1Elems.getInt(2));
 }
 }
}
rset.close ();
stmt.close ();
conn.close ();

16.4.3 Passing Arrays to Statement Objects
This section discusses how to pass arrays to prepared statement objects or callable
statement objects.

Passing an Array to a Prepared Statement

Pass an array to a prepared statement as follows.

Note:

you can use arrays as either IN or OUT bind variables.

1. Define the array that you want to pass to the prepared statement as an
oracle.sql.ARRAY object.

ARRAY array = oracle.jdbc.OracleConnection.createARRAY(sql_type_name, elements);

sql_type_name is a Java string specifying the user-defined SQL type name of the
array and elements is a java.lang.Object containing a Java array of the
elements.

2. Create a java.sql.PreparedStatement object containing the SQL statement to be
run.

Chapter 16
Creating and Using Arrays

16-13

3. Cast your prepared statement to OraclePreparedStatement, and use setARRAY to
pass the array to the prepared statement.

(OraclePreparedStatement)stmt.setARRAY(parameterIndex, array);

parameterIndex is the parameter index and array is the oracle.sql.ARRAY object
you constructed previously.

4. Run the prepared statement.

Passing an Array to a Callable Statement

To retrieve a collection as an OUT parameter in PL/SQL blocks, perform the following to
register the bind type for your OUT parameter.

1. Cast your callable statement to OracleCallableStatement, as follows:

OracleCallableStatement ocs = (OracleCallableStatement)conn.prepareCall("{? =
call func()}");

2. Register the OUT parameter with the following form of the registerOutParameter
method:

ocs.registerOutParameter
 (int param_index, int sql_type, string sql_type_name);

param_index is the parameter index, sql_type is the SQL type code, and
sql_type_name is the name of the array type. In this case, the sql_type is
OracleTypes.ARRAY.

3. Run the call, as follows:

ocs.execute();

4. Get the value, as follows:

oracle.sql.ARRAY array = ocs.getARRAY(1);

16.5 Using a Type Map to Map Array Elements
If your array contains Oracle objects, then you can use a type map to associate the
objects in the array with the corresponding Java class. If you do not specify a type
map, or if the type map does not contain an entry for a particular Oracle object, then
each element is returned as an oracle.jdbc.OracleStruct object.

If you want the type map to determine the mapping between the Oracle objects in the
array and their associated Java classes, then you must add an appropriate entry to the
map.

The following example illustrates how you can use a type map to map the elements of
an array to a custom Java object class. In this case, the array is a nested table. The
example begins by defining an EMPLOYEE object that has a name attribute and
employee number attribute. EMPLOYEE_LIST is a nested table type of EMPLOYEE objects.
Then an EMPLOYEE_TABLE is created to store the names of departments within a
corporation and the employees associated with each department. In the
EMPLOYEE_TABLE, the employees are stored in the form of EMPLOYEE_LIST tables.

stmt.execute("CREATE TYPE EMPLOYEE AS OBJECT
 (EmpName VARCHAR2(50),EmpNo INTEGER))");

stmt.execute("CREATE TYPE EMPLOYEE_LIST AS TABLE OF EMPLOYEE");

Chapter 16
Using a Type Map to Map Array Elements

16-14

stmt.execute("CREATE TABLE EMPLOYEE_TABLE (DeptName VARCHAR2(20),
 Employees EMPLOYEE_LIST) NESTED TABLE Employees STORE AS ntable1");

stmt.execute("INSERT INTO EMPLOYEE_TABLE VALUES ("SALES", EMPLOYEE_LIST
 (EMPLOYEE('Susan Smith', 123), EMPLOYEE('Lee Brown', 124)))");

If you want to retrieve all the employees belonging to the SALES department into an
array of instances of the custom object class EmployeeObj, then you must add an entry
to the type map to specify mapping between the EMPLOYEE SQL type and the
EmployeeObj custom object class.

To do this, first create your statement and result set objects, then select the
EMPLOYEE_LIST associated with the SALES department into the result set. Cast the
result set to OracleResultSet so you can use the getARRAY method to retrieve the
EMPLOYEE_LIST into an ARRAY object (employeeArray in the following example).

The EmployeeObj custom object class in this example implements the SQLData
interface.

Statement s = conn.createStatement();
OracleResultSet rs = (OracleResultSet)s.executeQuery
 ("SELECT Employees FROM employee_table WHERE DeptName = 'SALES'");

// get the array object
ARRAY employeeArray = ((OracleResultSet)rs).getARRAY(1);

Now that you have the EMPLOYEE_LIST object, get the existing type map and add an
entry that maps the EMPLOYEE SQL type to the EmployeeObj Java type.

// add type map entry to map SQL type
// "EMPLOYEE" to Java type "EmployeeObj"
Map map = conn.getTypeMap();
map.put("EMPLOYEE", Class.forName("EmployeeObj"));

Next, retrieve the SQL EMPLOYEE objects from the EMPLOYEE_LIST. To do this, call the
getArray method of the employeeArray array object. This method returns an array of
objects. The getArray method returns the EMPLOYEE objects into the employees object
array.

// Retrieve array elements
Object[] employees = (Object[]) employeeArray.getArray();

Finally, create a loop to assign each of the EMPLOYEE SQL objects to the EmployeeObj
Java object emp.

// Each array element is mapped to EmployeeObj object.
for (int i=0; i<employees.length; i++)
{
 EmployeeObj emp = (EmployeeObj) employees[i];
 ...
}

Chapter 16
Using a Type Map to Map Array Elements

16-15

17
Result Set

Standard Java Database Connectivity (JDBC) features in Java Development Kit (JDK)
include enhancements to result set functionality, such as processing forward or
backward, positioning relatively or absolutely, seeing changes to the database made
internally or externally, and updating result set data and then copying the changes to
the database.

This chapter discusses the following topics:

• Oracle JDBC Implementation Overview for Result Set Support

• Resultset Limitations and Downgrade Rules

• About Avoiding Update Conflicts

• Row Fetch Size

• About Refetching Rows

• About Viewing Database Changes Made Internally and Externally

17.1 Oracle JDBC Implementation Overview for Result Set
Support

This section discusses key aspects of the Oracle JDBC implementation of result set
support for scrollability, through use of a client-side cache, and for updatability,
through use of ROWIDs.

It is permissible for customers to implement their own client-side caching mechanism,
and Oracle provides an interface to use in doing so.

Oracle JDBC Implementation for Result Set Scrollability

Because the underlying server does not support scrollable cursors, Oracle JDBC must
implement scrollability in a separate layer.

It is important to be aware that this is accomplished by using a client-side memory
cache to store rows of a scrollable result set.

Note:

Because all rows of any scrollable result set are stored in the client-side
cache, a situation, where the result set contains many rows, many columns,
or very large columns, might cause the client-side Java Virtual Machine
(JVM) to fail. Do not specify scrollability for a large result set.

17-1

Oracle JDBC Implementation for Result Set Updatability

To support updatability, Oracle JDBC uses ROWID to uniquely identify database rows
that appear in a result set. For every query into an updatable result set, Oracle JDBC
driver automatically retrieves the ROWID along with the columns you select.

Note:

Client-side caching is not required by updatability in and of itself. In
particular, a forward-only updatable result set will not require a client-side
cache.

17.2 Resultset Limitations and Downgrade Rules
Some types of result sets are not feasible for certain kinds of queries. If you specify an
unfeasible result set type or concurrency type for the query you run, then the JDBC
driver follows a set of rules to determine the best feasible types to use instead.

The actual result set type and concurrency type are determined when the statement is
run, with the driver issuing a SQLWarning on the statement object if the desired result
set type or concurrency type is not feasible. The SQLWarning object will contain the
reason why the requested type was not feasible. Check for warnings to verify whether
you received the type of result set that you requested.

Result Set Limitations

The following limitations are placed on queries for enhanced result sets. Failure to
follow these guidelines results in the JDBC driver choosing an alternative result set
type or concurrency type.

To produce an updatable result set:

• A query can select from only a single table and cannot contain any join operations.

In addition, for inserts to be feasible, the query must select all non-nullable
columns and all columns that do not have a default value.

• A query cannot use SELECT * .

However, there is a workaround for this.

• A query must select table columns only.

It cannot select derived columns or aggregates, such as the SUM or MAX of a set of
columns.

To produce a scroll-sensitive result set:

• A query cannot use SELECT * .

However, there is a workaround for this.

• A query can select from only a single table.

Scrollable and updatable result sets cannot have any column as Stream. When the
server has to fetch a Stream column, it reduces the fetch size to one and blocks all

Chapter 17
Resultset Limitations and Downgrade Rules

17-2

columns following the Stream column until the Stream column is read. As a result,
columns cannot be fetched in bulk and scrolled through.

Workaround

As a workaround for the SELECT * limitation, you can use table aliases, as shown in
the following example:

SELECT t.* FROM TABLE t ...

Note:

There is a simple way to determine if your query will probably produce a
scroll-sensitive or updatable result set: If you can legally add a ROWID column
to the query list, then the query is probably suitable for either a scroll-
sensitive or an updatable result set.

Result Set Downgrade Rules

If the specified result set type or concurrency type is not feasible, then Oracle JDBC
driver uses the following rules in choosing alternate types:

• If the specified result set type is TYPE_SCROLL_SENSITIVE, but the JDBC driver
cannot fulfill that request, then the driver attempts a downgrade to
TYPE_SCROLL_INSENSITIVE.

• If the specified or downgraded result set type is TYPE_SCROLL_INSENSITIVE, but
the JDBC driver cannot fulfill that request, then the driver attempts a downgrade to
TYPE_FORWARD_ONLY.

• If the specified concurrency type is CONCUR_UPDATABLE, but the JDBC driver cannot
fulfill that request, then the JDBC driver attempts a downgrade to
CONCUR_READ_ONLY.

Note:

Any manipulations of the result set type and concurrency type by the JDBC
driver are independent of each other.

Verifying Result Set Type and Concurrency Type

After a query has been run, you can verify the result set type and concurrency type
that the JDBC driver actually used, by calling methods on the result set object.

• int getType() throws SQLException

This method returns an int value for the result set type used for the query.
ResultSet.TYPE_FORWARD_ONLY, ResultSet.TYPE_SCROLL_SENSITIVE, or
ResultSet.TYPE_SCROLL_INSENSITIVE are the possible values.

• int getConcurrency() throws SQLException

Chapter 17
Resultset Limitations and Downgrade Rules

17-3

This method returns an int value for the concurrency type used for the query.
ResultSet.CONCUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE are the possible
values.

17.3 About Avoiding Update Conflicts
It is important to be aware of the following facts regarding updatable result sets with
the JDBC drivers:

• The drivers do not enforce write locks for an updatable result set.

• The drivers do not check for conflicts with a result set DELETE or UPDATE operation.

A conflict will occur if you try to perform a DELETE or UPDATE operation on a row
updated by another committed transaction.

Oracle JDBC drivers use the ROWID to uniquely identify a row in a database table. As
long as the ROWID is valid when a driver tries to send an UPDATE or DELETE operation to
the database, the operation will be run.

The driver will not report any changes made by another committed transaction. Any
conflicts are silently ignored and your changes will overwrite the previous changes.

To avoid such conflicts, use the Oracle FOR UPDATE feature when running the query
that produces the result set. This will avoid conflicts, but will also prevent simultaneous
access to the data. Only a single write lock can be held concurrently on a data item.

17.4 Row Fetch Size
By default, when Oracle JDBC runs a query, it retrieves a result set of 10 rows at a
time from the database cursor. This is the default Oracle row fetch size value. You can
change the number of rows retrieved with each trip to the database cursor by changing
the row fetch size value.

Standard JDBC also enables you to specify the number of rows fetched with each
database round-trip for a query, and this number is referred to as the fetch size. In
Oracle JDBC, the row-prefetch value is used as the default fetch size in a statement
object. Setting the fetch size overrides the row-prefetch setting and affects subsequent
queries run through that statement object.

Fetch size is also used in a result set. When the statement object run a query, the
fetch size of the statement object is passed to the result set object produced by the
query. However, you can also set the fetch size in the result set object to override the
statement fetch size that was passed to it.

Note:

Changes made to the fetch size of a statement object after a result set is
produced will have no affect on that result set.

The result set fetch size, either set explicitly, or by default equal to the statement fetch
size that was passed to it, determines the number of rows that are retrieved in any
subsequent trips to the database for that result set. This includes any trips that are still
required to complete the original query, as well as any refetching of data into the result

Chapter 17
About Avoiding Update Conflicts

17-4

set. Data can be refetched, either explicitly or implicitly, to update a scroll-sensitive or
scroll-insensitive/updatable result set.

17.4.1 Setting the Fetch Size
The following methods are available in all Statement, PreparedStatement,
CallableStatement, and ResultSet objects for setting and getting the fetch size:

• void setFetchSize(int rows) throws SQLException

• int getFetchSize() throws SQLException

To set the fetch size for a query, call setFetchSize on the statement object prior to
running the query. If you set the fetch size to N, then N rows are fetched with each trip
to the database.

After you have run the query, you can call setFetchSize on the result set object to
override the statement object fetch size that was passed to it. This will affect any
subsequent trips to the database to get more rows for the original query, as well as
affecting any later refetching of rows.

17.4.2 Presetting the Fetch Direction
The standard JDBC enables to pre-specify the direction, known as the fetch direction,
for use in processing a result set. This allows the JDBC driver to optimize its
processing. The following result set methods are specified:

• void setFetchDirection(int direction) throws SQLException

• int getFetchDirection() throws SQLException

Oracle JDBC drivers support only the forward preset value, which you can specify by
entering the ResultSet.FETCH_FORWARD static constant value.

The values ResultSet.FETCH_REVERSE and ResultSet.FETCH_UNKNOWN are not
supported. Attempting to specify them causes a SQL warning, and the settings are
ignored.

17.5 About Refetching Rows
The result set refreshRow method is supported for some types of result sets for
refetching data. This consists of going back to the database to re-obtain the database
rows that correspond to n rows in the result set, starting with the current row, where n
is the fetch size. This lets you see the latest updates to the database that were made
outside of your result set, subject to the isolation level of the enclosing transaction.

Because refetching re-obtains only rows that correspond to rows already in your result
set, it does nothing about rows that have been inserted or deleted in the database
since the original query. It ignores rows that have been inserted, and rows will remain
in your result set even after the corresponding rows have been deleted from the
database. When there is an attempt to refetch a row that has been deleted in the
database, the corresponding row in the result set will maintain its original values.

Chapter 17
About Refetching Rows

17-5

Note:

If you declare a TYPE_SCROLL_SENSITIVE Result Set based on a query with
certain criteria and then externally update the row so that the column values
no longer match the query criteria, the driver behaves as if the row has been
deleted from the database and the row is not retrieved by the query issued.
So, you do not see the updates to the particular row when you call the
refreshRow method.

Following is the signature of the refreshRow method:

void refreshRow() throws SQLException

You must be at a valid current row when you call this method, not outside the row
bounds and not at the insert-row.

The refreshRow method is supported for the following result set categories:

• scroll-sensitive/read-only

• scroll-sensitive/updatable

• scroll-insensitive/updatable

Note:

Scroll-sensitive result set functionality is implemented through implicit calls to
refreshRow.

17.6 About Viewing Database Changes Made Internally and
Externally

This section discusses the ability of a result set to view the following:

• Own changes of the result set, referred to as internal changes

• Changes made from elsewhere, either from your own transaction outside the
result set, or from other committed transactions, referred to as external changes

Note:

External changes are referred to as other's changes in the standard JDBC
specification.

This section covers the following topics:

• Visibility versus Detection of External Changes

• Summary of Visibility of Internal and External Changes

Chapter 17
About Viewing Database Changes Made Internally and Externally

17-6

• Oracle Implementation of Scroll-Sensitive Result Sets

17.6.1 Visibility versus Detection of External Changes
Regarding the changes made to an underlying database by external sources, there
are two similar but distinct concepts with respect to visibility of the changes from your
local result set:

• Visibility of changes

• Detection of changes

A "visible" change means that when you look at a row in the result set, you can see
new data values from changes made by external sources, to the corresponding row in
the database.

A "detected" change, however, means that the result set is aware that this is a new
value since the result set was first populated.

Even when an Oracle result set sees new data, as with an external UPDATE in a scroll-
sensitive result set, it has no awareness that this data has changed since the result set
was populated. Such changes are not detected.

17.6.2 Summary of Visibility of Internal and External Changes
Table 17-1 summarizes how a result set object in the Oracle JDBC implementation
can see changes made internally through the result set itself, and changes made
externally to the underlying database from elsewhere in your transaction or from other
committed transactions.

Table 17-1 Visibility of Internal and External Changes for Oracle JDBC

Result Set Type Can See
Internal
DELETE?

Can See
Internal
UPDATE?

Can See
Internal
INSERT?

Can See
External
DELETE?

Can See
External
UPDATE?

Can See
External
INSERT?

forward-only no yes no no no no

scroll-sensitive yes yes no no yes no

scroll-insensitive yes yes no no no no

Note:

• Remember that explicit use of the refreshRow method, is distinct from
the concept of visibility of external changes.

• Remember that even when external changes are visible, as with UPDATE
operations underlying a scroll-sensitive result set, they are not detected.
The result set rowDeleted, rowUpdated, and rowInserted methods
always return false.

Chapter 17
About Viewing Database Changes Made Internally and Externally

17-7

17.6.3 Oracle Implementation of Scroll-Sensitive Result Sets
The Oracle implementation of scroll-sensitive result sets involves the concept of a
window, with a window size that is based on the fetch size. The window size affects
how often rows are updated in the result set.

Once you establish a current row by moving to a specified row, the window consists of
the n rows in the result set starting with that row, where n is the fetch size being used
by the result set. Note that there is no current row, and therefore no window, when a
result set is first created. The default position is before the first row, which is not a valid
current row.

As you move from row to row, the window remains unchanged as long as the current
row stays within that window. However, once you move to a new current row outside
the window, you redefine the window to be the N rows starting with the new current
row.

Whenever the window is redefined, the N rows in the database corresponding to the
rows in the new window are automatically refetched through an implicit call to the
refreshRow method, thereby updating the data throughout the new window.

So external updates are not instantaneously visible in a scroll-sensitive result set.
They are only visible after the automatic refetches just described.

Note:

This kind of refetching is not a highly efficient or optimized methodology and
it has significant performance concerns. Consider carefully before using
scroll-sensitive result sets as currently implemented. There is also a
significant trade-off between sensitivity and performance. The most sensitive
result set is one with a fetch size of 1, which would result in the new current
row being refetched every time you move between rows. However, this
would have a significant impact on the performance of your application.

Chapter 17
About Viewing Database Changes Made Internally and Externally

17-8

18
JDBC RowSets

This chapter contains the following sections:

• Overview of JDBC RowSets

• About CachedRowSet

• About JdbcRowSet

• About WebRowSet

• About FilteredRowSet

• About JoinRowSet

18.1 Overview of JDBC RowSets
A RowSet is an object that encapsulates a set of rows from either java Database
Connectivity (JDBC) result sets or tabular data sources. RowSets support component-
based development models like JavaBeans, with a standard set of properties and an
event notification mechanism.

RowSets were introduced in JDBC 2.0 through the optional packages. However, the
implementation of RowSets was standardized in the JDBC RowSet Implementations
Specification (JSR-114), which is available as non-optional package since Java
Platform, Standard Edition (Java SE) 5.0. Java SE 6.0 RowSets contain more APIs
supporting features like RowId, National Language Charactersets, and so on. The
Java SE Javadocs provide information about the standard interfaces and base classes
for JDBC RowSet implementations.

The JSR-114 specification includes implementation details for five types of RowSet:

• CachedRowSet

• JdbcRowSet

• WebRowSet

• FilteredRowSet

• JoinRowSet

Oracle JDBC supports all five types of RowSets through the interfaces and classes
present in the oracle.jdbc.rowset package. Since Oracle Database 11g Release 1,
RowSets support has been added in the server-side drivers. Therefore, starting from
Oracle Database 11g Release 1, RowSets support is uniform across all Oracle JDBC
driver types. The standard Oracle JDBC Java Archive (JAR) files, for example,
ojdbc6.jar and ojdbc7.jar contain the oracle.jdbc.rowset package.

18-1

Note:

• The other JAR files with different file suffix names, for example,
ojdbc6_g.jar, ojdbc6dms.jar, and so on also contain the
oracle.jdbc.rowset package.

• In Oracle Database 10g release 2, the implementation classes were
packaged in the ojdbc14.jar file.

• Prior to Oracle Database 10g release 2, the implementation classes
were packaged in the ocrs12.jar file.

• Prior to Oracle Database 11g Release 1, RowSets support was not
available in the server-side drivers.

Note:

In Oracle Database 10g release 2 (10.2), this package is included in the
standard Oracle JDBC JAR files: classes12.jar, ojdbc5.jar, and
ojdbc6.jar. Prior to Oracle Database 10g release 2 (10.2), the row set
implementation classes were packaged in the ocrs12.jar file.

To use the Oracle RowSet implementations, you need to import either the entire
oracle.jdbc.rowset package or specific classes and interfaces from the package for
the required RowSet type. For client-side usage, you also need to include the standard
Oracle JAR files like ojdbc6.jar or ojdbc7.jar in the CLASSPATH environment
variable.

This section covers the following topics:

• RowSet Properties

• Events and Event Listeners

• Command Parameters and Command Execution

• About Traversing RowSets

18.1.1 RowSet Properties
The javax.sql.RowSet interface provides a set of JavaBeans properties that can be
altered to access the data in the data source through a single interface. Example of
properties are connection string, user name, password, type of connection, and the
query string.

See Also:

The Java 2 Platform, Standard Edition (J2SE) Javadoc for a complete list of
properties and property descriptions at http://docs.oracle.com/javase/
1.5.0/docs/api/javax/sql/RowSet.html

Chapter 18
Overview of JDBC RowSets

18-2

http://docs.oracle.com/javase/1.5.0/docs/api/javax/sql/RowSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/javax/sql/RowSet.html

The interface provides standard accessor methods for setting and retrieving the
property values. The following code illustrates setting some of the RowSet properties:

...
rowset.setUrl("jdbc:oracle:oci:@");
rowset.setUsername("HR");
rowset.setPassword("hr");
rowset.setCommand("SELECT employee_id, first_name, last_name, salary FROM
employees");
...

In this example, the URL, user name, password, and SQL query are set as the RowSet
properties to retrieve the employee number, employee name, and salary of all the
employees into the RowSet object.

18.1.2 Events and Event Listeners
RowSets support JavaBeans events. The following types of events are supported by
the RowSet interface:

• cursorMoved

This event is generated whenever there is a cursor movement. For example, when
the next or previous method is called.

• rowChanged

This event is generated when a row is inserted, updated, or deleted from the
RowSet.

• rowSetChanged

This event is generated when the whole RowSet is created or changed. For
example, when the execute method is called.

An application component can implement a RowSet listener to listen to these RowSet
events and perform desired operations when the event occurs. Application
components, which are interested in these events, must implement the standard
javax.sql.RowSetListener interface and register such listener objects with a RowSet
object. A listener can be registered using the RowSet.addRowSetListener method and
unregistered using the RowSet.removeRowSetListener method. Multiple listeners can
be registered with the same RowSet object.

The following code illustrates the registration of a RowSet listener:

 ...
 MyRowSetListener rowsetListener = new MyRowSetListener ();
 // adding a rowset listener
 rowset.addRowSetListener (rowsetListener);
 ...

The following code illustrates a listener implementation:

 public class MyRowSetListener implements RowSetListener
 {
 public void cursorMoved(RowSetEvent event)
 {
 // action on cursor movement
 }

 public void rowChanged(RowSetEvent event)

Chapter 18
Overview of JDBC RowSets

18-3

 {
 // action on change of row
 }

 public void rowSetChanged(RowSetEvent event)
 {
 // action on changing of rowset
 }
 }// end of class MyRowSetListener

Applications that need to handle only selected events can implement only the required
event handling methods by using the
oracle.jdbc.rowset.OracleRowSetListenerAdapter class, which is an abstract class
with empty implementation for all the event handling methods. In the following code,
only the rowSetChanged event is handled, while the remaining events are not handled
by the application:

 ...
 rowset.addRowSetListener(new oracle.jdbc.rowset.OracleRowSetListenerAdapter ()
 {
 public void rowSetChanged(RowSetEvent event)
 {
 // your action for rowSetChanged
 }
 }
);
 ...

18.1.3 Command Parameters and Command Execution
The command property of a RowSet object typically represents a SQL query string, which
when processed would populate the RowSet object with actual data. Like in regular
JDBC processing, this query string can take input or bind parameters. The
javax.sql.RowSet interface also provides methods for setting input parameters to this
SQL query. After the required input parameters are set, the SQL query can be
processed to populate the RowSet object with data from the underlying data source.
The following code illustrates this simple sequence:

 ...
 rowset.setCommand("SELECT first_name, last_name, salary FROM employees WHERE
employee_id = ?");
 // setting the employee number input parameter for employee named "Douglas"
 rowset.setInt(1, 199);
 rowset.execute();
 ...

In the preceding example, the employee number 199 is set as the input or bind
parameter for the SQL query specified in the command property of the RowSet object.
When the SQL query is processed, the RowSet object is filled with the employee name
and salary information of the employee whose employee number is 199.

18.1.4 About Traversing RowSets
The javax.sql.RowSet interface extends the java.sql.ResultSet interface. The
RowSet interface, therefore, provides cursor movement and positioning methods, which
are inherited from the ResultSet interface, for traversing through data in a RowSet

Chapter 18
Overview of JDBC RowSets

18-4

object. Some of the inherited methods are absolute, beforeFirst, afterLast, next,
and previous.

The RowSet interface can be used just like a ResultSet interface for retrieving and
updating data. The RowSet interface provides an optional way to implement a
scrollable and updatable result set. All the fields and methods provided by the
ResultSet interface are implemented in RowSet.

Note:

The Oracle implementation of ResultSet provides the scrollable and
updatable properties of the java.sql.ResultSet interface.

The following code illustrates how to scroll through a RowSet:

/**
 * Scrolling forward, and printing the empno in
 * the order in which it was fetched.
 */
...
rowset.setCommand("SELECT empno, ename, sal FROM emp");
rowset.execute();
...
// going to the first row of the rowset
rowset.beforeFirst ();
while (rowset.next ())
 System.out.println ("empno: " +rowset.getInt (1));

In the preceding code, the cursor position is initialized to the position before the first
row of the RowSet by the beforeFirst method. The rows are retrieved in forward
direction using the next method.

The following code illustrates how to scroll through a RowSet in the reverse direction:

/**
 * Scrolling backward, and printing the empno in
 * the reverse order as it was fetched.
 */
//going to the last row of the rowset
rowset.afterLast ();
while (rowset.previous ())
 System.out.println ("empno: " +rowset.getInt (1));

In the preceding code, the cursor position is initialized to the position after the last row
of the RowSet. The rows are retrieved in reverse direction using the previous method
of RowSet.

Inserting, updating, and deleting rows are supported by the Row Set feature as they
are in the Result Set feature. In order to make the Row Set updatable, you must call
the setReadOnly(false) and acceptChanges methods.

The following code illustrates the insertion of a row at the fifth position of a Row Set:

...
/**
 * Make rowset updatable
 */

Chapter 18
Overview of JDBC RowSets

18-5

rowset.setReadOnly (false);
/**
 * Inserting a row in the 5th position of the rowset.
 */
// moving the cursor to the 5th position in the rowset
if (rowset.absolute(5))
{
 rowset.moveToInsertRow ();
 rowset.updateInt (1, 193);
 rowset.updateString (2, "Smith");
 rowset.updateInt (3, 7200);

 // inserting a row in the rowset
 rowset.insertRow ();

 // Synchronizing the data in RowSet with that in the database.
 rowset.acceptChanges ();
}
...

In the preceding code, a call to the absolute method with a parameter 5 takes the
cursor to the fifth position of the RowSet and a call to the moveToInsertRow method
creates a place for the insertion of a new row into the RowSet. The updateXXX
methods are used to update the newly created row. When all the columns of the row
are updated, the insertRow is called to update the RowSet. The changes are
committed through acceptChanges method.

18.2 About CachedRowSet
A CachedRowSet is a RowSet in which the rows are cached and the RowSet is
disconnected, that is, it does not maintain an active connection to the database. The
oracle.jdbc.rowset.OracleCachedRowSet class is the Oracle implementation of
CachedRowSet. It can interoperate with the standard reference implementation. The
OracleCachedRowSet class in the ojdbc6.jar and ojdbc7.jar files implements the
standard JSR-114 interface javax.sql.rowset.CachedRowSet.

In the following code, an OracleCachedRowSet object is created and the connection
URL, user name, password, and the SQL query for the RowSet object is set as
properties. The RowSet object is populated using the execute method. After the
execute method has been processed, the RowSet object can be used as a
java.sql.ResultSet object to retrieve, scroll, insert, delete, or update data.

...
RowSet rowset = new OracleCachedRowSet();
rowset.setUrl("jdbc:oracle:oci:@");
rowset.setUsername("HR");
rowset.setPassword("hr");
rowset.setCommand("SELECT employee_id, first_name, last_name, salary FROM
employees");
rowset.execute();
while (rowset.next ())
{
 System.out.println("employee_id: " +rowset.getInt (1));
 System.out.println("first_name: " +rowset.getString (2));
 System.out.println("last_name: " +rowset.getString (3));
 System.out.println("sal: " +rowset.getInt (4));
}
...

Chapter 18
About CachedRowSet

18-6

To populate a CachedRowSet object with a query, complete the following steps:

1. Instantiate OracleCachedRowSet.

2. Set the Url, which is the connection URL, Username, Password, and Command,
which is the query string, properties for the RowSet object. You can also set the
connection type, but it is optional.

3. Call the execute method to populate the CachedRowSet object. Calling execute
runs the query set as a property on this RowSet.

 OracleCachedRowSet rowset = new OracleCachedRowSet ();
 rowset.setUrl ("jdbc:oracle:oci:@");
 rowset.setUsername ("HR");
 rowset.setPassword ("hr");
 rowset.setCommand ("SELECT employee_id, first_name, last_name, salary FROM
employees");
 rowset.execute ();

A CachedRowSet object can be populated with an existing ResultSet object, using the
populate method. To do so, complete the following steps:

1. Instantiate OracleCachedRowSet.

2. Pass the already available ResultSet object to the populate method to populate
the RowSet object.

 // Executing a query to get the ResultSet object.
 ResultSet rset = pstmt.executeQuery ();

 OracleCachedRowSet rowset = new OracleCachedRowSet ();
 // the obtained ResultSet object is passed to the populate method
 // to populate the data in the rowset object.
 rowset.populate (rset);

In the preceding example, a ResultSet object is obtained by running a query and the
retrieved ResultSet object is passed to the populate method of the CachedRowSet
object to populate the contents of the result set into the CachedRowSet.

Note:

Connection properties, like transaction isolation or the concurrency mode of
the result set, and the bind properties cannot be set in the case where a pre-
existent ResultSet object is used to populate the CachedRowSet object,
because the connection or result set on which the property applies would
have already been created.

The following code illustrates how an OracleCachedRowSet object is serialized to a file
and then retrieved:

// writing the serialized OracleCachedRowSet object
{
 FileOutputStream fileOutputStream = new FileOutputStream("emp_tab.dmp");
 ObjectOutputStream ostream = new ObjectOutputStream(fileOutputStream);
 ostream.writeObject(rowset);
 ostream.close();

Chapter 18
About CachedRowSet

18-7

 fileOutputStream.close();
}

// reading the serialized OracleCachedRowSet object
{
 FileInputStream fileInputStream = new FileInputStream("emp_tab.dmp");
 ObjectInputStream istream = new ObjectInputStream(fileInputStream);
 RowSet rowset1 = (RowSet) istream.readObject();
 istream.close();
 fileInputStream.close();
}

In the preceding code, a FileOutputStream object is opened for an emp_tab.dmp file,
and the populated OracleCachedRowSet object is written to the file using
ObjectOutputStream. The serialized OracleCachedRowSet object is retrieved using the
FileInputStream and ObjectInputStream objects.

OracleCachedRowSet takes care of the serialization of non-serializable form of data like
InputStream, OutputStream, binary large objects (BLOBs), and character large objects
(CLOBs). OracleCachedRowSets also implements metadata of its own, which could be
obtained without any extra server round-trip. The following code illustrates how you
can obtain metadata for the RowSet:

...
ResultSetMetaData metaData = rowset.getMetaData();
int maxCol = metaData.getColumnCount();
for (int i = 1; i <= maxCol; ++i)
 System.out.println("Column (" + i +") " + metaData.getColumnName(i));
...

Because the OracleCachedRowSet class is serializable, it can be passed across a
network or between Java Virtual Machines (JVMs), as done in Remote Method
Invocation (RMI). Once the OracleCachedRowSet class is populated, it can move
around any JVM, or any environment that does not have JDBC drivers. Committing the
data in the RowSet requires the presence of JDBC drivers.

The complete process of retrieving the data and populating it in the
OracleCachedRowSet class is performed on the server and the populated RowSet is
passed on to the client using suitable architectures like RMI or Enterprise Java Beans
(EJB). The client would be able to perform all the operations like retrieving, scrolling,
inserting, updating, and deleting on the RowSet without any connection to the
database. Whenever data is committed to the database, the acceptChanges method is
called, which synchronizes the data in the RowSet to that in the database. This
method makes use of JDBC drivers, which require the JVM environment to contain
JDBC implementation. This architecture would be suitable for systems involving a Thin
client like a Personal Digital Assistant (PDA).

After populating the CachedRowSet object, it can be used as a ResultSet object or any
other object, which can be passed over the network using RMI or any other suitable
architecture.

Some of the other key-features of CachedRowSet are the following:

• Cloning a RowSet

• Creating a copy of a RowSet

• Creating a shared copy of a RowSet

Chapter 18
About CachedRowSet

18-8

CachedRowSet Constraints

All the constraints that apply to an updatable result set are applicable here, except
serialization, because OracleCachedRowSet is serializable. The SQL query has the
following constraints:

• References only a single table in the database

• Contains no join operations

• Selects the primary key of the table it references

In addition, a SQL query should also satisfy the following conditions, if new rows are to
be inserted:

• Selects all non-nullable columns in the underlying table

• Selects all columns that do not have a default value

Note:

The CachedRowSet cannot hold a large quantity of data, because all the
data is cached in memory. Oracle, therefore, recommends against using
OracleCachedRowSet with queries that could potentially return a large
volume of data.

Connection properties like, transaction isolation and concurrency mode of the result
set, cannot be set after populating the RowSet, because the properties cannot be
applied to the connection after retrieving the data from the same.

18.3 About JdbcRowSet
A JdbcRowSet is a RowSet that wraps around a ResultSet object. It is a connected
RowSet that provides JDBC interfaces in the form of a JavaBean interface. The Oracle
implementation of JdbcRowSet is oracle.jdbc.rowset.OracleJDBCRowSet. The
OracleJDBCRowSet class in ojdbc6.jar and ojdbc7.jar implements the standard
JSR-114 interface javax.sql.rowset.JdbcRowSet.

Table 18-1 shows how the JdbcRowSet interface differs from CachedRowSet interface.

Table 18-1 The JDBC and Cached Row Sets Compared

RowSet Type Serializable Connected
to Database

Movable
Across
JVMs

Synchronization
of data to
database

Presence
of JDBC
Drivers

JDBC Yes Yes No No Yes

Cached Yes No Yes Yes No

JdbcRowSet is a connected RowSet, which has a live connection to the database and
all the calls on the JdbcRowSet are percolated to the mapping call in the JDBC
connection, statement, or result set. A CachedRowSet does not have any connection
to the database open.

Chapter 18
About JdbcRowSet

18-9

JdbcRowSet requires the presence of JDBC drivers unlike a CachedRowSet, which
does not require JDBC drivers during manipulation. However, both JdbcRowSet and
CachedRowSet require JDBC drivers during population of the RowSet and while
committing the changes of the RowSet.

The following code illustrates how a JdbcRowSet is used:

...
RowSet rowset = new OracleJDBCRowSet();
rowset.setUrl("java:oracle:oci:@");
rowset.setUsername("HR");
rowset.setPassword("hr");
rowset.setCommand("SELECT empno, ename, sal FROM emp");
rowset.execute();
while (rowset.next())
{
 System.out.println("empno: " + rowset.getInt(1));
 System.out.println("ename: " + rowset.getString(2));
 System.out.println("sal: " + rowset.getInt(3));
}
...

In the preceding example, the connection URL, user name, password, and SQL query
are set as properties of the RowSet object, the SQL query is processed using the
execute method, and the rows are retrieved and printed by traversing through the data
populated in the RowSet object.

18.4 About WebRowSet
A WebRowSet is an extension to CachedRowSet. It represents a set of fetched rows
or tabular data that can be passed between tiers and components in a way such that
no active connections with the data source need to be maintained. The WebRowSet
interface provides support for the production and consumption of result sets and their
synchronization with the data source, both in Extensible Markup Language (XML)
format and in disconnected fashion. This allows result sets to be shipped across tiers
and over Internet protocols.

The Oracle implementation of WebRowSet is oracle.jdbc.rowset.OracleWebRowSet.
This class, which is in the ojdbc6.jar and ojdbc7.jar files, implements the standard
JSR-114 interface javax.sql.rowset.WebRowSet. This class also extends the
oracle.jdbc.rowset.OracleCachedRowSet class. Besides the methods available in
OracleCachedRowSet, the OracleWebRowSet class provides the following methods:

• public OracleWebRowSet() throws SQLException

This is the constructor for creating an OracleWebRowSet object, which is initialized
with the default values for an OracleCachedRowSet object, a default
OracleWebRowSetXmlReader, and a default OracleWebRowSetXmlWriter.

• public void writeXml(java.io.Writer writer) throws SQLException
public void writeXml(java.io.OutputStream ostream) throws SQLException

These methods write the OracleWebRowSet object to the supplied Writer or
OutputStream object in the XML format that conforms to the JSR-114 XML
schema. In addition to the RowSet data, the properties and metadata of the
RowSet are written.

Chapter 18
About WebRowSet

18-10

• public void writeXml(ResultSet rset, java.io.Writer writer) throws SQLException
public void writeXml(ResultSet rset, java.io.OutputStream ostream) throws
SQLException

These methods create an OracleWebRowSet object, populate it with the data in the
given ResultSet object, and write it to the supplied Writer or OutputStream object
in the XML format that conforms to the JSR-114 XML schema.

• public void readXml(java.io.Reader reader) throws SQLException
public void readXml(java.io.InputStream istream) throws SQLException

These methods read the OracleWebRowSet object in the XML format according to
its JSR-114 XML schema, using the supplied Reader or InsputStream object.

The Oracle WebRowSet implementation supports Java API for XML Processing
(JAXP) 1.2. Both Simple API for XML (SAX) 2.0 and Document Object Model (DOM)
JAXP-conforming XML parsers are supported. It follows the current JSR-114 W3C
XML schema for WebRowSet.

Applications that use the readXml(...) methods should set one of the following two
standard JAXP system properties before calling the methods:

• javax.xml.parsers.SAXParserFactory

This property is for a SAX parser.

• javax.xml.parsers.DocumentBuilderFactory

This property is for a DOM parser.

The following code illustrates the use of OracleWebRowSet for both writing and reading
in XML format:

import java.sql.*;
import java.io.*;
import oracle.jdbc.rowset.*;

...
String url = "jdbc:oracle:oci8:@";

Connection conn = DriverManager.getConnection(url,"HR","hr");
Statement stmt = conn.createStatement();
ResultSet rset = stmt.executeQuery("select * from employees");

// Create an OracleWebRowSet object and populate it with the ResultSet object
OracleWebRowSet wset = new OracleWebRowSet();
wset.populate(rset);

try
{
 // Create a java.io.Writer object
 FileWriter out = new FileWriter("xml.out");

 // Now generate the XML and write it out
 wset.writeXml(out);
}
catch (IOException exc)
{
 System.out.println("Couldn't construct a FileWriter");
}
System.out.println("XML output file generated.");

Chapter 18
About WebRowSet

18-11

// Create a new OracleWebRowSet for reading from XML input
OracleWebRowSet wset2 = new OracleWebRowSet();

// Use Oracle JAXP SAX parser
System.setProperty("javax.xml.parsers.SAXParserFactory","oracle.xml.jaxp.JXSAXParserF
actory");

try
{
 // Use the preceding output file as input
 FileReader fr = new FileReader("xml.out");

 // Now read XML stream from the FileReader
 wset2.readXml(fr);
}
catch (IOException exc)
{
 System.out.println("Couldn't construct a FileReader");
}
...

Note:

The preceding code uses the Oracle SAX XML parser, which supports
schema validation.

18.5 About FilteredRowSet
A FilteredRowSet is an extension to WebRowSet that provides programmatic support
for filtering its content. This enables you to avoid the overhead of supplying a query
and the processing involved. The Oracle implementation of FilteredRowSet is
oracle.jdbc.rowset.OracleFilteredRowSet. The OracleFilteredRowSet class in the
ojdbc7.jar files implements the standard JSR-114 interface
javax.sql.rowset.FilteredRowSet.

The OracleFilteredRowSet class defines the following new methods:

• public Predicate getFilter();

This method returns a Predicate object that defines the filtering criteria active on
the OracleFilteredRowSet object.

• public void setFilter(Predicate p) throws SQLException;

This method takes a Predicate object as a parameter. The Predicate object
defines the filtering criteria to be applied on the OracleFilteredRowSet object. The
methods throws a SQLException exception.

Chapter 18
About FilteredRowSet

18-12

Note:

If you are using classes12.jar instead of ojdbc5.jar and ojdbc6.jar for
FilteredRowSet features, then use OraclePredicate instead of Predicate.
The oracle.jdbc.rowset.OraclePredicate interface is Oracle specific and
is equivalent to Predicate. This interface is used when the JSR-114
packages are not available.

The predicate set on an OracleFilteredRowSet object defines a filtering criteria that is
applied to all the rows in the object to obtain the set of visible rows. The predicate also
defines the criteria for inserting, deleting, and modifying rows. The set filtering criteria
acts as a gating mechanism for all views and updates to the OracleFilteredRowSet
object. Any attempt to update the OracleFilteredRowSet object, which violates the
filtering criteria, throws a SQLException exception.

The filtering criteria set on an OracleFilteredRowSet object can be modified by
applying a new Predicate object. The new criteria is immediately applied on the
object, and all further views and updates must adhere to this new criteria. A new
filtering criteria can be applied only if there are no reference to the
OracleFilteredRowSet object.

Rows that fall outside of the filtering criteria set on the object cannot be modified until
the filtering criteria is removed or a new filtering criteria is applied. Also, only the rows
that fall within the bounds of the filtering criteria will be synchronized with the data
source, if an attempt is made to persist the object.

The following code example illustrates the use of OracleFilteredRowSet. Assume a
table, test_table, with two NUMBER columns, col1 and col2. The code retrieves those
rows from the table that have value of col1 between 50 and 100 and value of col2
between 100 and 200.

The predicate defining the filtering criteria is as follows:

public class PredicateImpl implements Predicate
{
 private int low[];
 private int high[];
 private int columnIndexes[];

 public PredicateImpl(int[] lo, int[] hi, int[] indexes)
 {
 low = lo;
 high = hi;
 columnIndexes = indexes;
 }

 public boolean evaluate(RowSet rs)
 {
 boolean result = true;
 for (int i = 0; i < columnIndexes.length; i++)
 {
 int columnValue = rs.getInt(columnIndexes[i]);
 if (columnValue < low[i] || columnValue > high[i])
 result = false;
 }
 return result;

Chapter 18
About FilteredRowSet

18-13

 }

// the other two evaluate(...) methods simply return true

}

The predicate defined in the preceding code is used for filtering content in an
OracleFilteredRowSet object, as follows:

...
OracleFilteredRowSet ofrs = new OracleFilteredRowSet();
int low[] = {50, 100};
int high[] = {100, 200};
int indexes[] = {1, 2};
ofrs.setCommand("select col1, col2 from test_table");

// set other properties on ofrs like usr/pwd ...
...
ofrs.execute();
ofrs.setPredicate(new PredicateImpl(low, high, indexes));

// this will only get rows with col1 in (50,100) and col2 in (100,200)
while (ofrs.next()) {...}
...

18.6 About JoinRowSet
A JoinRowSet is an extension to WebRowSet that consists of related data from
different RowSets. There is no standard way to establish a SQL JOIN between
disconnected RowSets without connecting to the data source. A JoinRowSet
addresses this issue. The Oracle implementation of JoinRowSet is the
oracle.jdbc.rowset.OracleJoinRowSet class. This class, which is in the ojdbc7.jar
files, implements the standard JSR-114 interface javax.sql.rowset.JoinRowSet.

Any number of RowSet objects, which implement the Joinable interface, can be added
to a JoinRowSet object, provided they can be related in a SQL JOIN. All five types of
RowSet support the Joinable interface. The Joinable interface provides methods for
specifying the columns based on which the JOIN will be performed, that is, the match
columns.

Note:

If you are using classes12.jar instead of ojdbc5.jar and ojdbc6.jar for
JoinRowSet features, then use OracleJoinable instead of Joinable. The
oracle.jdbc.rowset.OracleJoinable interface is Oracle-specific and is
equivalent to Joinable. This interface is used when the JSR-114 packages
are not available.

A match column can be specified in the following ways:

• Using the setMatchColumn method

This method is defined in the Joinable interface. It is the only method that can be
used to set the match column before a RowSet object is added to a JoinRowSet
object. This method can also be used to reset the match column at any time.

Chapter 18
About JoinRowSet

18-14

• Using the addRowSet method

This is an overloaded method in JoinRowSet. Four of the five implementations of
this method take a match column as a parameter. These four methods can be
used to set or reset a match column at the time a RowSet object is being added to
a JoinRowSet object.

In addition to the inherited methods, OracleJoinRowSet provides the following
methods:

• public void addRowSet(Joinable joinable) throws SQLException;
public void addRowSet(RowSet rowSet, int i) throws SQLException;
public void addRowSet(RowSet rowSet, String s) throws SQLException;
public void addRowSet(RowSet arowSet[], int an[]) throws SQLException;
public void addRowSet(RowSet arowSet[], String as[]) throws SQLException;

These methods are used to add a RowSet object to the OracleJoinRowSet object.
You can pass one or more RowSet objects to be added to the OracleJoinRowSet
object. You can also pass names or indexes of one or more columns, which need
to be set as match column.

• public Collection getRowSets() throws SQLException;

This method retrieves the RowSet objects added to the OracleJoinRowSet object.
The method returns a java.util.Collection object that contains the RowSet
objects.

• public String[] getRowSetNames() throws SQLException;

This method returns a String array containing the names of the RowSet objects that
are added to the OracleJoinRowSet object.

• public boolean supportsCrossJoin();
public boolean supportsFullJoin();
public boolean supportsInnerJoin();
public boolean supportsLeftOuterJoin();
public boolean supportsRightOuterJoin();

These methods return a boolean value indicating whether the OracleJoinRowSet
object supports the corresponding JOIN type.

• public void setJoinType(int i) throws SQLException;

This method is used to set the JOIN type on the OracleJoinRowSet object. It takes
an integer constant as defined in the javax.sql.rowset.JoinRowSet interface that
specifies the JOIN type.

• public int getJoinType() throws SQLException;

This method returns an integer value that indicates the JOIN type set on the
OracleJoinRowSet object. This method throws a SQLException exception.

• public CachedRowSet toCachedRowSet() throws SQLException;

This method creates a CachedRowSet object containing the data in the
OracleJoinRowSet object.

• public String getWhereClause() throws SQLException;

Chapter 18
About JoinRowSet

18-15

This method returns a String containing the SQL-like description of the WHERE
clause used in the OracleJoinRowSet object. This methods throws a
SQLException exception.

The following code illustrates how OracleJoinRowSet is used to perform an inner join
on two RowSets, whose data come from two different tables. The resulting RowSet
contains data as if they were the result of an inner join on these two tables. Assume
that there are two tables, an Order table with two NUMBER columns Order_id and
Person_id, and a Person table with a NUMBER column Person_id and a VARCHAR2
column Name.

...
// RowSet holding data from table Order
OracleCachedRowSet ocrsOrder = new OracleCachedRowSet();
...
ocrsOrder.setCommand("select order_id, person_id from order");
...
// Join on person_id column
ocrsOrder.setMatchColumn(2);
ocrsOrder.execute();

// Creating the JoinRowSet
OracleJoinRowSet ojrs = new OracleJoinRowSet();
ojrs.addRowSet(ocrsOrder);

// RowSet holding data from table Person
OracleCachedRowSet ocrsPerson = new OracleCachedRowSet();
...
ocrsPerson.setCommand("select person_id, name from person");
...
// do not set match column on this RowSet using setMatchColumn().
//use addRowSet() to set match column
ocrsPerson.execute();

// Join on person_id column, in another way
ojrs.addRowSet(ocrsPerson, 1);

// now we can go the JoinRowSet as usual
ojrs.beforeFirst();
while (ojrs.next())
System.out.println("order id = " + ojrs.getInt(1) + ", " + "person id = " +
ojrs.getInt(2) + ", " + "person's name = " + ojrs.getString(3));
...

Chapter 18
About JoinRowSet

18-16

19
Globalization Support

The Oracle Java Database Connectivity (JDBC) drivers provide globalization support,
formerly known as National Language Support (NLS). Globalization support enables
you to retrieve data or insert data into a database in any character set that Oracle
supports. If the clients and the server use different character sets, then the driver
provides the support to perform the conversions between the database character set
and the client character set.

This chapter contains the following sections:

• About Providing Globalization Support

• NCHAR_ NVARCHAR2_ NCLOB and the defaultNChar Property

• New Methods for National Character Set Type Data in JDK 6

Note:

• Starting from Oracle Database 10g, the NLS_LANG variable is no longer
part of the JDBC globalization mechanism. The JDBC driver does not
check NLS environment. So, setting it has no effect.

• The JDBC server-side internal driver provides complete globalization
support and does not require any globalization extension files.

• JDBC 4.0 includes methods for reading and writing national character
set values. You should use these methods when using JSE 6 or later.

Related Topics

• Oracle Character Data Types Support

• Oracle Database Globalization Support Guide

19.1 About Providing Globalization Support
The basic Java Archive (JAR) file ojdbc7.jar, contains all the necessary classes to
provide complete globalization support for:

• Oracle character sets for CHAR, VARCHAR, LONGVARCHAR, or CLOB data that is not
being retrieved or inserted as a data member of an Oracle object or collection
type.

• CHAR or VARCHAR data members of object and collection for the character sets
US7ASCII, WE8DEC, WE8ISO8859P1, WE8MSWIN1252, and UTF8.

To use any other character sets in CHAR or VARCHAR data members of objects or
collections, you must include orai18n.jar in the CLASSPATH environment variable:

ORACLE_HOME/jlib/orai18n.jar

19-1

Note:

Previous releases depended on the nls_charset12.zip file. This file is now
obsolete.

Compressing orai18n.jar

The orai18n.jar file contains many important character set and globalization support
files. You can reduce the size of orai18n.jar using the built-in customization tool, as
follows:

java -jar orai18n.jar -custom-charsets-jar [jar/zip_filename] -charset
characterset_name [characterset_name ...]

For example, if you want to create a custom character set file,
custom_orai18n_ja.jar, that includes the JA16SJIS and JA16EUC character sets,
then issue the following command:

$ java -jar orai18n.jar -custom-charsets-jar custom_orai18n_ja.jar -charset JA16SJIS
JA16EUC

The output of the command is as follows:

Added Character set : JA16SJIS
Added Character set : JA16EUC

If you do not specify a file name for your custom JAR/ZIP file, then a file with the name
jdbc_orai18n_cs.jar is created in the current working directory. Also, for your custom
JAR/ZIP file, you cannot specify a name that starts with orai18n.

If any invalid or unsupported character set name is specified in the command, then no
output JAR/ZIP file will be created. If the custom JAR/ZIP file exists, then the file will
not be updated or removed.

The custom character set JAR/ZIP does not accept any command. However, it prints
the version information and the command that was used to generate the JAR/ZIP file.
For example, you have jdbc_orai18n_cs.zip, the command that displays the
information and the displayed information is as follows:

$ java -jar jdbc_orai18n_cs.jar
Oracle Globalization Development Kit - 12.1.X.X.X Release
This custom character set jar/zip file was created with the following command:
java -jar orai18n.jar -custom-charsets-jar jdbc_orai18n_cs.jar -charset WE8ISO8859P15

The limitation to the number of character sets that can be specified depends on that of
the shell or command prompt of the operating system. It is certified that all supported
character sets can be specified with the command.

Chapter 19
About Providing Globalization Support

19-2

Note:

If you are using a custom character set, then you need to perform the
following so that JDBC supports the custom character set:

1. After creating the .nlt and .nlb files as part of the process of creating a
custom character set, create .glb files for the newly created character
set and also for the lx0boot.nlt file using the following command:

java -classpath $ORACLE_HOME/jlib/orai18n.jar:$ORACLE_HOME/lib/
xmlparserv2.jar Ginstall -[add | a] <NLT_file_name>

2. Add the generated files and $ORACLE_HOME/jlib/orai18n-mappings.jar
into the classpath environment variable while executing the JDBC code
that connects to the database with the custom character set.

19.2 NCHAR, NVARCHAR2, NCLOB and the defaultNChar
Property

By default, the oracle.jdbc.OraclePreparedStatement interface treats the data type
of all the columns in the same way as they are encoded in the database character set.
However, since Oracle Database 10g, if you set the value of
oracle.jdbc.defaultNChar system property to true, then JDBC treats all character
columns as being national-language.

The default value of defaultNChar is false. If the value of defaultNChar is false, then
you must call the setFormOfUse(<column_Index>,
OraclePreparedStatement.FORM_NCHAR) method for those columns that specifically
need national-language characters. For example:

PreparedStatement pstmt =
conn.prepareStatement("insert into TEST values(?,?,?)");
pstmt.setFormOfUse(1, OraclePreparedStatement.FORM_NCHAR);
pstmt.setString(1, myUnicodeString1); // NCHAR column
pstmt.setFormOfUse(2, OraclePreparedeStatement.FORM_NCHAR);
pstmt.setString(2, myUnicodeString2); // NVARCHAR2 column

If you want to set the value of defaultNChar to true, then specify the following at the
command-line:

java -Doracle.jdbc.defaultNChar=true myApplication

If you prefer, then you can also specify defaultNChar as a connection property and
access NCHAR, NVARCHAR2, or NCLOB data.

Properties props = new Properties();
props.put(OracleConnection.CONNECTION_PROPERTY_DEFAULTNCHAR, "true");
// set URL, username, password, and so on.
...
Connection conn = DriverManager.getConnection(props);

If the value of defaultNChar is true, then you should call the
setFormOfUse(<column_Index>, FORM_CHAR) for columns that do not need national-
language characters. For example:

Chapter 19
NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property

19-3

PreparedStatement pstmt =
conn.prepareStatement("insert into TEST values(?,?,?)");
pstmt.setFormOfUse(3, OraclePreparedStatement.FORM_CHAR);
pstmt.setString(3, myString); // CHAR column

Note:

If you set the value of defaultNChar to true and then access CHAR columns,
then the database will implicitly convert all CHAR data into NCHAR. This
conversion has a substantial performance impact.

Note:

• Always use java.lang.String for character data instead of
oracle.sql.CHAR. CHAR is provided only for backward compatibility.

• You can also use the setObject method to access national character set
types, but if the setObject method is used, then the target data type
must be specified as Types.NCHAR, Types.NCLOB, Types.NVARCHAR, or
Types.LONGNVARCHAR.

Note:

In Oracle Database, SQL strings are converted to the database character
set. Therefore you need to keep in mind the following:

• In Oracle Database 10g release 1 (10.1) and earlier releases, JDBC
drivers do not support any NCHAR literal (n'...') containing Unicode
characters that are not representable in the database character set. All
Unicode characters that are not representable in the database character
set get corrupted.

• If an Oracle Database 10g release 2 (10.2) JDBC driver is connected to
an Oracle Database 10g release 2 (10.2) database server, then all NCHAR
literals (n'...') are converted to Unicode literals (u'...') and all non-ASCII
characters are converted to their corresponding Unicode escape
sequence. This is done automatically to prevent data corruption.

• If an Oracle Database 10g release 2 (10.2) JDBC driver is connected to
an Oracle Database 10g release 1 (10.1) or earlier database server, then
NCHAR literals (n'...') are not converted and any character that is not
representable in the database character set gets corrupted.

Chapter 19
NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property

19-4

19.3 New Methods for National Character Set Type Data in
JDK 6

JDBC 4.0 introduces support for the following four additional SQL types to access the
national character set types:

• NCHAR

• NVARCHAR

• LONGNVARCHAR

• NCLOB

These types are similar to the CHAR, VARCHAR, LONGVARCHAR, and CLOB types, except
that the values are encoded using the national character set. The JDBC specification
uses the String class to represent NCHAR, NVARCHAR, and LONGNVARCHAR data, and the
NClob class to represent NCLOB values.

To retrieve a national character value, an application calls one of the following
methods:

• getNString

• getNClob

• getNCharacterStream

• getObject

Note:

The getClob method may be used to return an NClob object since NClob
implements Clob.

To specify a value for a parameter marker of national character type, an application
calls one of the following methods:

• setNString

• setNCharacterStream

• setNClob

• setObject

Note:

You can use the setFormOfUse method to specify a national character value
in JDK 6. But this practice is discouraged because this method will be
deprecated in future release. So, Oracle recommends you to use the
methods discussed in this section.

Chapter 19
New Methods for National Character Set Type Data in JDK 6

19-5

See Also:

If the setObject method is used, then the target data type must be specified
as Types.NCHAR, Types.NCLOB, Types.NVARCHAR, or Types.LONGNVARCHAR.

Chapter 19
New Methods for National Character Set Type Data in JDK 6

19-6

Part V
Performance and Scalability

This part consists of chapters that discuss the Oracle Java Database Connectivity
(JDBC) features that enhance performance, such as Statement caching and Oracle
Call Interface (OCI) connection pooling. It also includes a chapter that provides
information about Oracle performance extensions, such as update batching and row
prefetching.

Part V contains the following chapters:

• Statement and Result Set Caching

• Performance Extensions

• OCI Connection Pooling

• Database Resident Connection Pooling

• Oracle Advanced Queuing

• Continuous Query Notification

20
Statement and Result Set Caching

This chapter describes the benefits and use of Statement caching, an Oracle Java
Database Connectivity (JDBC) extension.

Note:

Use statement caching only when you are sure that the table structure
remains the same in the database. If you alter the table structure and then
reuse a statement that was created and executed before changing the table
structure, then you may get an error.

This chapter contains the following sections:

• About Statement Caching

• About Using Statement Caching

• About Reusing Statements Objects

• About Result Set Caching

20.1 About Statement Caching
Statement caching improves performance by caching executable statements that are
used repeatedly, such as in a loop or in a method that is called repeatedly. Starting
from JDBC 3.0, JDBC standards define a statement-caching interface.

Statement caching can do the following:

• Prevent the overhead of repeated cursor creation

• Prevent repeated statement parsing and creation

• Reuse data structures in the client

This section covers the following topics:

• Basics of Statement Caching

• Implicit Statement Caching

• Explicit Statement Caching

20-1

Note:

Oracle strongly recommends you use the implicit Statement cache. Oracle
JDBC drivers are designed on the assumption that the implicit Statement
cache is enabled. So, not using the Statement cache will have a negative
impact on performance.

20.1.1 Basics of Statement Caching
Applications use the Statement cache to cache statements associated with a particular
physical connection. The cache is associated with an OracleConnection object.
OracleConnection includes methods to enable Statement caching. When you enable
Statement caching, a statement object is cached when you call the close method.

Because each physical connection has its own cache, multiple caches can exist if you
enable Statement caching for multiple physical connections. When you enable
Statement caching on a connection cache, the logical connections benefit from the
Statement caching that is enabled on the underlying physical connection. If you try to
enable Statement caching on a logical connection held by a connection cache, then
this will throw an exception.

There are two types of Statement caching: implicit and explicit. Each type of Statement
cache can be enabled or disabled independent of the other. You can have either,
neither, or both in effect. Both types of Statement caching share a single cache per
connection.

20.1.2 Implicit Statement Caching
When you enable implicit Statement caching, JDBC automatically caches the prepared
or callable statement when you call the close method of this statement object. The
prepared and callable statements are cached and retrieved using standard connection
object and statement object methods.

Plain statements are not implicitly cached, because implicit Statement caching uses a
SQL string as a key and plain statements are created without a SQL string. Therefore,
implicit Statement caching applies only to the OraclePreparedStatement and
OracleCallableStatement objects, which are created with a SQL string. You cannot
use implicit Statement caching with OracleStatement. When you create an
OraclePreparedStatement or OracleCallableStatement, the JDBC driver
automatically searches the cache for a matching statement. The match criteria are the
following:

• The SQL string in the statement must be identical to one in the cache.

• The statement type must be the same, that is, prepared or callable.

• The scrollable type of result sets produced by the statement must be the same,
that is, forward-only or scrollable.

If a match is found during the cache search, then the cached statement is returned. If
a match is not found, then a new statement is created and returned. In either case, the
statement, along with its cursor and state are cached when you call the close method
of the statement object.

Chapter 20
About Statement Caching

20-2

When a cached OraclePreparedStatement or OracleCallableStatement object is
retrieved, the state and data information are automatically reinitialized and reset to
default values, while metadata is saved. Statements are removed from the cache to
conform to the maximum size using a Least Recently Used (LRU) algorithm.

Note:

The JDBC driver does not clear metadata. However, although metadata is
saved for performance reasons, it has no semantic impact. A statement that
comes from the implicit cache appears as if it were newly created.

You can prevent a particular statement from being implicitly cached.

Related Topics

• About Using Implicit Statement Caching

20.1.3 Explicit Statement Caching
Explicit Statement caching enables you to cache and retrieve selected prepared and
callable statements. Explicit Statement caching relies on a key, an arbitrary Java
String that you provide.

Note:

Plain statements cannot be cached.

Because explicit Statement caching retains statement data and state as well as
metadata, it has a performance edge over implicit Statement caching, which retains
only metadata. However, you must be cautious when using this type of caching,
because explicit Statement caching saves all three types of information for reuse and
you may not be aware of what data and state are retained from prior use of the
statements.

Implicit and explicit Statement caching can be differentiated on the following points:

• Retrieving statements

In the case of implicit Statement caching, you take no special action to retrieve
statements from a cache. Instead, whenever you call prepareStatement or
prepareCall, JDBC automatically checks the cache for a matching statement and
returns it if found. However, in the case of explicit Statement caching, you use
specialized Oracle WithKey methods to cache and retrieve statement objects.

• Providing key

Implicit Statement caching uses the SQL string of a prepared or callable statement
as the key, requiring no action on your part. In contrast, explicit Statement caching
requires you to provide a Java String, which it uses as the key.

• Returning statements

Chapter 20
About Statement Caching

20-3

During implicit Statement caching, if the JDBC driver cannot find a statement in
cache, then it will automatically create one. However, during explicit Statement
caching, if the JDBC driver cannot find a matching statement in cache, then it will
return a null value.

Table 20-1 compares the different methods employed in implicit and explicit Statement
caching.

Table 20-1 Comparing Methods Used in Statement Caching

Type of
Caching

Allocate Insert Into Cache Retrieve From Cache

Implicit prepareStatement
prepareCall

close prepareStatement prepareCall

Explicit createStatement
prepareStatement
prepareCall

closeWithKey getStatementWithKey
getCallWithKey

20.2 About Using Statement Caching
This section discusses the following topics:

• About Enabling and Disabling Statement Caching

• About Closing a Cached Statement

• About Using Implicit Statement Caching

• About Using Explicit Statement Caching

20.2.1 About Enabling and Disabling Statement Caching
When using the OracleConnection API, implicit and explicit Statement caching can be
enabled or disabled independent of one other. You can have either, neither, or both of
them in effect.

Enabling Implicit Statement Caching

There are two ways to enable implicit Statement caching. The first method enables
Statement caching on a nonpooled physical connection, where you need to explicitly
specify the Statement size for every connection, using the setStatementCacheSize
method. The second method enables Statement caching on a pooled logical
connection. Each connection in the pool has its own Statement cache with the same
maximum size that can be specified by setting the MaxStatementsLimit property.

Method 1

Perform the following steps:

• Call the OracleDataSource.setImplicitCachingEnabled(true) method on the
connection to set the OracleDataSource property implicitCachingEnabled to
true. For example:

OracleDataSource ods = new OracleDataSource();
...

Chapter 20
About Using Statement Caching

20-4

ods.setImplicitCachingEnabled(true);
...

• Call the OracleConnection.setStatementCacheSize method on the physical
connection. The argument you supply is the maximum number of statements in
the cache. For example, the following code specifies a cache size of ten
statements:

((OracleConnection)conn).setStatementCacheSize(10);

Method 2

Perform the following steps:

• Set the OracleDataSource properties implicitCachingEnabled and
connectionCachingEnabled to true. For example:

OracleDataSource ods = new OracleDataSource();
...
ods.setConnectionCachingEnabled(true);
ods.setImplicitCachingEnabled(true);
...

• Set the MaxStatementsLimit property to a positive integer on the connection
cache, when using the connection cache. For example:

Properties cacheProps = new Properties();
...
cacheProps.put("MaxStatementsLimit", "50");

To determine whether implicit caching is enabled, call getImplicitCachingEnabled,
which returns true if implicit caching is enabled, false otherwise.

Note:

Enabling Statement caching enables both implicit and explicit Statement
caching.

Disabling Implicit Statement Caching

Disable implicit Statement caching by calling setImplicitCachingEnabled(false) on
the connection or by setting the ImplicitCachingEnabled property to false.

Enabling Explicit Statement Caching

To enable explicit Statement caching you must first set the Statement cache size. For
setting the cache size, call OracleConnection.setStatementCacheSize method on the
physical connection. The argument you supply is the maximum number of statements
in the cache. An argument of 0 specifies no caching. To check the cache size, use the
getStatementCacheSize method in the following way:

System.out.println("Stmt Cache size is " +
 ((OracleConnection)conn).getStatementCacheSize());

The following code specifies a cache size of ten statements:

((OracleConnection)conn).setStatementCacheSize(10);

Chapter 20
About Using Statement Caching

20-5

Enable explicit Statement caching by calling setExplicitCachingEnabled(true) on
the connection.

To determine whether explicit caching is enabled, call getExplicitCachingEnabled,
which returns true if explicit caching is enabled, false otherwise.

Note:

• You enable implicit and explicit caching for a particular physical
connection independently. Therefore, it is possible to do Statement
caching both implicitly and explicitly during the same session.

• Implicit and explicit Statement caching share the same cache.
Remember this when you set the statement cache size.

Disabling Explicit Statement Caching

Disable explicit Statement caching by calling setExplicitCachingEnabled(false).
Disabling caching or closing the cache purges the cache. The following example
disables explicit Statement caching:

((OracleConnection)conn).setExplicitCachingEnabled(false);

20.2.2 About Closing a Cached Statement
Perform the following to close a Statement and assure that it is not returned to the
cache:

In J2SE 5.0

• Disable caching for that statement

stmt.setDisableStmtCaching(true);

• Call the close method of the statement object

stmt.close();

In JSE 6.0

stmt.setPoolable(false);
stmt.close();

Physically Closing a Cached Statement

With implicit Statement caching enabled, you cannot physically close statements
manually. The close method of a statement object caches the statement instead of
closing it. The statement is physically closed automatically under one of following three
conditions:

• When the associated connection is closed

• When the cache reaches its size limit and the least recently used statement object
is preempted from cache by the LRU algorithm

• If you call the close method on a statement for which Statement caching is
disabled

Chapter 20
About Using Statement Caching

20-6

20.2.3 About Using Implicit Statement Caching
Once you enable implicit Statement caching, by default, all prepared and callable
statements are automatically cached. Implicit Statement caching includes the following
steps:

1. Enable implicit Statement caching.

2. Allocate a statement using one of the standard methods.

3. Disable implicit Statement caching for any particular statement you do not want to
cache. This is an optional step.

4. Cache the statement using the close method.

5. Retrieve the implicitly cached statement by calling the appropriate standard
prepare method.

Allocating a Statement for Implicit Caching

To allocate a statement for implicit Statement caching, use either the
prepareStatement or prepareCall method as you would typically.

The following code allocates a new statement object called pstmt:

PreparedStatement pstmt = conn.prepareStatement
 ("UPDATE emp SET ename = ? WHERE rowid = ?");

Disabling Implicit Statement Caching for a Particular Statement

With implicit Statement caching enabled for a connection, by default, all callable and
prepared statements of that connection are automatically cached. To prevent a
particular callable or prepared statement from being implicitly cached, use the
setDisableStmtCaching method of the statement object. You can manage cache
space by calling the setDisableStmtCaching method on any infrequently used
statement.

The following code disables implicit Statement caching for pstmt:

PreparedStatement pstmt = conn.prepareStatement("SELECT 1 from DUAL");
((OraclePreparedStatement)pstmt).setDisableStmtCaching(true);
pstmt.close ();

Note:

If you are using JSE 6, then you can disable Statement caching by using the
standard JDBC 4.0 method setPoolable:

PreparedStatement.setPoolable(false);

Use the following to check whether the Statement object is poolable:

Statement.isPoolable();

Chapter 20
About Using Statement Caching

20-7

Implicitly Caching a Statement

To cache an allocated statement, call the close method of the statement object. When
you call the close method on an OraclePreparedStatement or
OracleCallableStatement object, the JDBC driver automatically puts this statement in
cache, unless you have disabled caching for this statement.

The following code caches the pstmt statement:

pstmt.close ();

Retrieving an Implicitly Cached Statement

To retrieve an implicitly cached statement, call either the prepareStatement or
prepareCall method, depending on the statement type.

The following code retrieves pstmt from cache using the prepareStatement method:

pstmt = conn.prepareStatement ("UPDATE emp SET ename = ? WHERE rowid = ?");

20.2.3.1 Methods Used in Statement Allocation and Implicit Statement Caching
Table 20-2 describes the methods used to allocate statements and retrieve implicitly
cached statements.

Table 20-2 Methods Used in Statement Allocation and Implicit Statement
Caching

Method Functionality for Implicit Statement Caching

prepareStatement Performs a cache search that either finds and returns the
desired cached OraclePreparedStatement object or
allocates a new OraclePreparedStatement object if a match
is not found

prepareCall Performs a cache search that either finds and returns the
desired cached OracleCallableStatement object or
allocates a new OracleCallableStatement object if a match
is not found

Example 20-1 provides a sample code that shows how to enable implicit statement
caching.

Example 20-1 Using Implicit Statement Cache

import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Properties;
import javax.sql.DataSource;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.pool.OracleDataSource;
public class TestJdbc
{
 /**
 * Get a Connection, prepare a statement, execute a query, fetch the results,
close the connection.
 * @param ods the DataSource used to get the connection.
 */

Chapter 20
About Using Statement Caching

20-8

 private static void doSQL(DataSource ods) throws SQLException
 {
 final String SQL = "select username from all_users";
 OracleConnection conn = null;
 PreparedStatement ps = null;
 ResultSet rs = null;
 try
 {
 conn = (OracleConnection) ods.getConnection();
 System.out.println("Connection:" + conn);
 System.out.println("Connection getImplicitCachingEnabled:" +
conn.getImplicitCachingEnabled());
 System.out.println("Connection getStatementCacheSize:" +
conn.getStatementCacheSize());
 ps = conn.prepareStatement(SQL);
 System.out.println("PreparedStatement:" + ps);
 rs = ps.executeQuery();
 while (rs.next())
 {
 String owner = rs.getString(1);
 System.out.println(owner);
 }
 }
 finally
 {
 if (rs != null)
 {
 rs.close();
 }
 if (ps != null)
 {
 ps.close();
 conn.close();
 }
 }
 }
 public static void main(String[] args)
 {
 try
 {
 OracleDataSource ods = new OracleDataSource();
 ods.setDriverType("thin");
 ods.setServerName("localhost");
 ods.setPortNumber(5221);
 ods.setServiceName("orcl");
 ods.setUser("HR");
 ods.setPassword("hr");
 ods.setConnectionCachingEnabled(true);
 ods.setImplicitCachingEnabled(true);
 Properties cacheProps = new Properties();
 cacheProps.put("InitialLimit", "1");
 cacheProps.put("MinLimit", "1");
 cacheProps.put("MaxLimit", "5");
 cacheProps.put("MaxStatementsLimit", "50");
 ods.setConnectionCacheProperties(cacheProps);
 System.out.println("DataSource getImplicitCachingEnabled: " +
ods.getImplicitCachingEnabled());
 for (int i = 0; i < 5; i++)
 {
 doSQL(ods);
 }

Chapter 20
About Using Statement Caching

20-9

 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }
}

20.2.4 About Using Explicit Statement Caching
A prepared or callable statement can be explicitly cached when you enable explicit
Statement caching. Explicit Statement caching includes the following steps:

1. Enable explicit Statement caching.

2. Allocate a statement using one of the standard methods.

3. Explicitly cache the statement by closing it with a key, using the closeWithKey
method.

4. Retrieve the explicitly cached statement by calling the appropriate Oracle WithKey
method, specifying the appropriate key.

5. Re-cache an open, explicitly cached statement by closing it again with the
closeWithKey method. Each time a cached statement is closed, it is re-cached
with its key.

Allocating a Statement for Explicit Caching

To allocate a statement for explicit Statement caching, use either the
createStatement, prepareStatement, or prepareCall method as you would typically.

The following code allocates a new statement object called pstmt:

PreparedStatement pstmt =
 conn.prepareStatement ("UPDATE emp SET ename = ? WHERE rowid = ?");

Explicitly Caching a Statement

To explicitly cache an allocated statement, call the closeWithKey method of the
statement object, specifying a key. The key is an arbitrary Java String that you
provide. The closeWithKey method caches a statement as is. This means the data,
state, and metadata are retained and not cleared.

The following code caches the pstmt statement with the key "mykey":

((OraclePreparedStatement)pstmt).closeWithKey ("mykey");

Retrieving an Explicitly Cached Statement

To recall an explicitly cached statement, call either the getStatementWithKey or
getCallWithKey methods depending on the statement type.

If you retrieve a statement with a specified key, then the JDBC driver searches the
cache for the statement, based on the specified key. If a match is found, then the
matching statement is returned along with its state, data, and metadata. This
information is as it was when the statement was last closed. If a match is not found,
then the JDBC driver returns null.

Chapter 20
About Using Statement Caching

20-10

The following code recalls pstmt from cache using the "mykey" key with the
getStatementWithKey method. Recall that the pstmt statement object was cached
with the "mykey" key.

pstmt = ((OracleConnection)conn).getStatementWithKey ("mykey");

If you call the creationState method on the pstmt statement object, then the method
returns EXPLICIT.

Note:

When you retrieve an explicitly cached statement, ensure that you use the
method that is appropriate for your statement type when specifying the key.
For example, if you used the prepareStatement method to allocate a
statement, then use the getStatementWithKey method to retrieve that
statement from cache. The JDBC driver does not verify the type of statement
it is returning.

20.2.4.1 Methods Used to Retrieve Explicitly Cached Statements
Table 20-3 describes the methods used to retrieve explicitly cached statements.

Table 20-3 Methods Used to Retrieve Explicitly Cached Statements

Method Functionality for Explicit Statement Caching

getStatementWithKey Specifies the key needed to retrieve a prepared
statement from cache

getCallWithKey Specifies the key needed to retrieve a callable
statement from cache

20.3 About Reusing Statements Objects
The JDBC 3.0 specification introduces the feature of statement pooling that enables
an application to reuse a PreparedStatement object in the same way as it uses a
Connection object. The PreparedStatement objects can be reused by multiple logical
connections in a transparent manner.

This section covers the following topics:

• About Using a Pooled Statement

• About Closing a Pooled Statement

Note:

The Oracle JDBC Drivers use implicit statement caching to support
statement pooling.

Chapter 20
About Reusing Statements Objects

20-11

20.3.1 About Using a Pooled Statement
An application can find out whether a data source supports statement pooling by
calling the isPoolable method from the Statement interface. If the return value is
true, then the application knows that the PreparedStatement object is being pooled.
The application can also request a statement to be pooled or not pooled by using the
setPoolable method from the Statement interface.

Reusing of pooled statement should be completely transparent to the application, that
is, the application code should remain the same whether a PreparedStatement object
participates in statement pooling or not. If an application closes a PreparedStatement
object, it must still call Connection.prepareStatement method in order to reuse it.

Note:

An application has no direct control over how statements are pooled. A pool
of statements is associated with a PooledConnection object, whose behavior
is determined by the properties of the ConnectionPoolDataSource object that
produced it.

20.3.2 About Closing a Pooled Statement
An application closes a pooled statement exactly the same way it closes a nonpooled
statement. Once a statement is closed, whether is it pooled or nonpooled, it is no
longer available for use by the application and an attempt to reuse it causes an
exception to be thrown. The only difference visible is that an application cannot directly
close a physical statement that is being pooled. This is done by the pool manager. The
method PooledConnection.closeAll closes all of the statements open on a given
physical connection, which releases the resources associated with those statements.

The following methods can close a pooled statement:

• close

This java.sql.Statement interface method is called by an application. If the
statement is being pooled, then it closes the logical statement used by the
application but does not close the physical statement being pooled.

• close

This java.sql.Connection interface method is called by an application. This
method acts differently depending upon whether the connection using the
statement is being pooled or not:

– Nonpooled connection

This method closes the physical connection and all statements created by that
connection. This is necessary because the garbage collection mechanism is
unable to detect when externally managed resources can be released.

– Pooled connection

This method closes the logical connection and the logical statements it
returned, but leaves open the underlying PooledConnection object and any
associated pooled statements

Chapter 20
About Reusing Statements Objects

20-12

• PooledConnection.closeAll

This method is called by the connection pool manager to close all of the physical
statements being pooled by the PooledConnection object

20.4 About Result Set Caching
Your applications sometime send repetitive queries to the database. To improve the
response time of repetitive queries, results of queries, query fragments, and PL/SQL
functions can be cached in memory. A result cache stores the results of queries
shared across all sessions. When these queries are executed repeatedly, the results
are retrieved directly from the cache memory.

Note:

If a result set is very large, then it may not be cached due to size restrictions.

You must annotate a query or query fragment with a result cache hint to indicate that
results are to be stored in the query result cache.

The query result set can be cached in the following ways:

• Server-Side Result Set Cache

• Client-Side Result Set Cache

Note:

• The server-side and client result set caches are most useful for read-only
or read-mostly data. They may reduce performance for queries with
highly dynamic results.

• Both server-side and client result set caches use memory. So, caching
very large result sets can cause performance problems.

20.4.1 Server-Side Result Set Cache
Support for server-side Result Set caching has been introduced for both JDBC Thin
and JDBC Oracle Call Interface (OCI) drivers since Oracle Database 11g Release 1.
The server-side result cache is used to cache the results of the current queries, query
fragments, and PL/SQL functions in memory and then to use the cached results in
future executions of the query, query fragment, or PL/SQL function. The cached
results reside in the result cache memory portion of the SGA. A cached result is
automatically invalidated whenever a database object used in its creation is
successfully modified. The server-side caching can be of the following two types:

• SQL Query Result Cache

• PL/SQL Function Result Cache

Chapter 20
About Result Set Caching

20-13

See Also:

• Oracle Database Performance Tuning Guide for more information about
SQL Query Result Cache

• Oracle Database PL/SQL Language Reference for more information
about PL/SQL Function Result Cache

20.4.2 Client-Side Result Set Cache
Client-side result set cache feature enables client-side caching of SQL query result
sets in client memory. In this way, the applications can use client memory to take
advantage of the client-side result set cache to improve response times of repetitive
queries.

This section covers the following topics:

• Enabling the Client-Side Result Set Cache

• Benefits of Client-Side Result Set Cache

• Usage Guidelines in JDBC

20.4.2.1 Enabling the Client-Side Result Set Cache

Oracle Database Release 18c supports client-side result set cache in the JDBC thin
driver. You can use the new oracle.jdbc.enableQueryResultCache connection
property for enabling this feature. The default value of this property is true, which
means that this feature is enabled by default. You can disable this feature by setting
the property to false.

Note:

• In Oracle Database 12c Release 2 (12.2), the enableQueryResultCache
property is available as enableResultSetCache, and the default value is
false. You can enable this feature by setting the enableResultSetCache
property to true.

• The JDBC OCI driver supports client-side result set cache already.

See Also:

Oracle Call Interface Programmer's Guide

Chapter 20
About Result Set Caching

20-14

For using this feature, you must set the following database initialization parameters in
the following way:

CLIENT_RESULT_CACHE_SIZE=100M
CLIENT_RESULT_CACHE_LAG=1000

This value of the CLIENT_RESULT_CACHE_SIZE parameter controls how much memory
the thin driver can use for its cache.

A read-only or read-mostly table can then be annoted and its data can be cached on
the driver. For example, RESULT_CACHE(MODE FORCE).

You can also use a SQL hint /*+RESULT_CACHE */ for identifying queries that are
eligible for caching.

See Also:

Oracle Database JDBC Java API Reference

20.4.2.2 Benefits of Client-Side Result Set Cache
The benefits of the client-side result set cache are the following:

• The client-side result set cache is completely transparent to the applications and
its cache of result set data is kept consistent with any session or database
changes that affect its result set.

• Table annotation makes client-side result set work transparently to the JDBC
applications. Otherwise, you must use a hint to enable it. The cache hit avoids the
execution of the query and roundtrip to the server to get the result sets. This can
result in huge performance savings for server resources, for example, server CPU
and server I/O.

See Also:

Table Annotations and SQL Hints

• The result cache on the client is per-process, so multiple client sessions can
simultaneously use matching cached result sets.

• The result cache on the client minimizes the need for each application to have its
own custom result set cache.

• The result cache on the client uses the client memory that is cheaper than server
memory.

20.4.2.3 Usage Guidelines in JDBC
You can enable result set caching in the following three ways:

• RESULT_CACHE_MODE Parameter

• Table Annotations

Chapter 20
About Result Set Caching

20-15

• SQL Hints

Note:

• You must use JDBC statement caching or cache statements at the
application level when using the client-side result set cache.

• The SQL hints take precedence over the session parameter
RESULT_CACHE_MODE and table annotations. The table annotation FORCE
takes precedence over session parameter.

Related Topics

• Statement and Result Set Caching

20.4.2.3.1 RESULT_CACHE_MODE Parameter
You can use the RESULT_CACHE_MODE parameter to decide the result cache mode
across tables in your queries. Use this clause with the ALTER SESSION and ALTER
SYSTEM statements, or inside the server parameter file (init.ora) to determine result
caching. You can set the RESULT_CACHE_MODE parameter to control whether the SQL
query result cache is used for all queries, or only for the queries that are annotated
with the result cache hint using SQL hints or table annotations.

20.4.2.3.2 Table Annotations
You can use table annotations to enable result caching without making changes to the
code. The ALTER TABLE and CREATE TABLE statements enable you to annotate tables
with result cache mode. The syntax is:

CREATE|ALTER TABLE [<schema>.]<table> ... [RESULT_CACHE (MODE {FORCE|DEFAULT})]

Following example shows how to use table annotations with CREATE TABLE statements:

CREATE TABLE foo (a NUMBER, b VARCHAR2(20)) RESULT_CACHE (MODE FORCE);

Following example shows how to use table annotations with ALTER TABLE statements:

ALTER TABLE foo RESULT_CACHE (MODE DEFAULT);

20.4.2.3.3 SQL Hints
You can use SQL hints to specify the queries to be cached by annotating the queries
with a /*+ result_cache */ or /*+ no_result_cache */ hint. For example, look at the
following code snippet:

String query = "select /*+ result_cache */ * from employees where employee_id < :
1";
 ((oracle.jdbc.OracleConnection)conn).setImplicitCachingEnabled(true);
 ((oracle.jdbc.OracleConnection)conn).setStatementCacheSize(10);
 PreparedStatement pstmt;
 ResultSet rs;

 for (int j = 0 ; j < 10 ; j++)
 {

Chapter 20
About Result Set Caching

20-16

 pstmt = conn.prepareStatement (query);
 pstmt.setInt(1,7500);
 rs = pstmt.executeQuery();
 while (rs.next())
 { // see the values }
 rs.close;
 pstmt.close() ;
 }
 }

In the preceding example, the client result cache hint /*+ result_cache */ is
annotated to the actual query, that is, select * from employees where employee_id
< : 1. So, the first execution of the query goes to the database and the result set is
cached for the remaining nine executions of the query. This improves the performance
of your application significantly. This is primarily useful for read-only data.

Following are some more examples of SQL hints. All the following examples assume
that the dept table is annotated for result caching by using the following command:

ALTER TABLE dept result_cache (MODE FORCE);

Examples

• SELECT * FROM employees

The result set will not be cached.

• SELECT * FROM departments

The result set will be cached.

• SELECT /*+ result_cache */ employee_id FROM employees

The result set will be cached.

• SELECT /*+ no_result_cache */ department_id FROM departments

The result set will not be cached.

• SELECT /*+ result_cache */ * FROM departments

The result set will be cached though query hint is not necessary.

• SELECT e.first_name FROM employees e, departments d WHERE
e.department_id = d.department_id

The result set will not be cached because neither is a query hint available nor are
all the tables annotated as FORCE.

Note:

For information about usage guidelines, Client cache consistency,
Deployment Time settings, Client cache Statistics, Validation of client result
cache, and OCI Client Result Cache and Server Result Cache, refer to the
Oracle Call Interface Programmer's Guide.

Chapter 20
About Result Set Caching

20-17

21
Performance Extensions

This chapter describes the Oracle performance extensions to the Java Database
Connectivity (JDBC) standard.

This chapter covers the following topics:

• Update Batching

• Additional Oracle Performance Extensions

Note:

Oracle update batching was deprecated in Oracle Database 12c Release 1
(12.1). Starting in Oracle Database 12c Release 2 (12.2), Oracle update
batching is a no operation code (no-op). This means that if you implement
Oracle update batching in your application, using the Oracle Database 12c
Release 2 (12.2) JDBC driver, then the specified batch size is not set and
results in a batch size of 1. With this batch setting, your application
processes one row at a time. Oracle strongly recommends that you use the
standard JDBC batching if you are using the Oracle Database 12c Release 2
(12.2) JDBC driver.

21.1 Update Batching
This section covers the following topics:

• Overview of Update Batching

• Standard Update Batching

• Premature Batch Flush

21.1.1 Overview of Update Batching
You can reduce the number of round-trips to the database, thereby improving
application performance, by grouping multiple UPDATE, DELETE, or INSERT statements
into a single batch and having the whole batch sent to the database and processed in
one trip. This is referred to as 'update batching'. This is especially useful with prepared
statements, when you are repeating the same statement with different bind variables.

21-1

Note:

• The JDBC 2.0 specification refers to 'update batching' as 'batch updates'.

• To adhere to the JDBC 2.0 standard, Oracle implementation of standard
update batching supports callable statements without OUT parameters,
generic statements, and prepared statements. You can migrate standard
update batching into an Oracle JDBC application without difficulty.
However, the Oracle implementation of standard update batching does
not implement true batching for generic statements and callable
statements and you will see performance improvement for only
PreparedStatement objects.

21.1.2 Standard Update Batching
JDBC standard update batching depends on explicitly adding statements to the batch
using an addBatch method and explicitly processing the batch using an executeBatch
method.

Note:

Disable auto-commit mode when you use update batching. In case an error
occurs while you are processing a batch, this provides you the option of
committing or rolling back the operations that ran successfully prior to the
error.

21.1.2.1 Limitations in the Oracle Implementation of Standard Batching
This section discusses the limitations and implementation details regarding the Oracle
implementation of standard update batching.

In Oracle JDBC applications, update batching is intended for use with prepared
statements that are being processed repeatedly with different sets of bind values.

The Oracle implementation of standard update batching does not implement true
batching for generic statements and callable statements. Even though Oracle JDBC
supports the use of standard batching for Statement and CallableStatement objects,
you are unlikely to see performance improvement.

21.1.2.2 About Adding Operations to the Batch
When any statement object is first created, its statement batch is empty. Use the
standard addBatch method to add an operation to the statement batch. This method is
specified in the standard java.sql.Statement, PreparedStatement, and
CallableStatement interfaces, which are implemented by the
oracle.jdbc.OracleStatement, OraclePreparedStatement, and
OracleCallableStatement interfaces, respectively.

For a Statement object, the addBatch method takes a Java String with a SQL
operation as input. For example:

Chapter 21
Update Batching

21-2

...
Statement stmt = conn.createStatement();

stmt.addBatch("INSERT INTO emp VALUES(1000, 'Joe Jones')");
stmt.addBatch("INSERT INTO dept VALUES(260, 'Sales')");
stmt.addBatch("INSERT INTO emp_dept VALUES(1000, 260)");
...

At this point, three operations are in the batch.

For prepared statements, update batching is used to batch multiple runs of the same
statement with different sets of bind parameters. For a PreparedStatement or
OraclePreparedStatement object, the addBatch method takes no input. It simply adds
the operation to the batch using the bind parameters last set by the appropriate setXXX
methods. This is also true for CallableStatement or OracleCallableStatement
objects, but remember that in the Oracle implementation of standard update batching,
you will probably see no performance improvement in batching callable statements.

For example:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();
...

At this point, two operations are in the batch.

Because a batch is associated with a single prepared statement object, you can batch
only repeated runs of a single prepared statement, as in this example.

21.1.2.3 About Processing the Batch
To process the current batch of operations, use the executeBatch method of the
statement object. This method is specified in the standard Statement interface, which
is extended by the standard PreparedStatement and CallableStatement interfaces.

Chapter 21
Update Batching

21-3

Note:

If you add too many operations to a batch by calling the addBatch method
several times and create a very large batch (for example, with more than or
equal to 100,000 rows), then while calling the executeBatch method on the
whole batch, you may face severe performance problems in terms of
memory. To avoid this issue, the JDBC driver transparently breaks up the
large batches into smaller internal batches and makes a roundtrip to the
server for each internal batch. This makes your application slightly slower
because of each round-trip overhead, but optimizes memory significantly.
However, if each bound row is very large in size (for example, more than
about 1MB each or so), then this process can impact the overall performance
negatively because in such a case, the performance gained in terms of
memory will be less than the performance lost in terms of time.

Following is an example that repeats the prepared statement addBatch calls shown
previously and then processes the batch:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();

int[] updateCounts = pstmt.executeBatch();
...

21.1.2.4 Row Count per Iteration for Array DMLs
Starting from Oracle Database 12c Release 1 (12.1), the executeBatch method has
been improved so that it returns an int array of size that is the same as the number of
records in the batch and each item in the return array is the number of database table
rows affected by the corresponding record of the batch. For example, if the batch size
is 5, then the executeBatch method returns an array of size 5. In case of an error in
between execution of the batch, the executeBatch method cannot return a value,
instead it throws a BatchUpdateException. In this case, the exception itself carries an
int array of size n as its data, where n is the number of successful record executions.
For example, if the batch is of size 5 and the error occurs at the 4th record, then the
BatchUpdateException has an array of size 3 (3 records executed successfully) and
each item in the array represents how many rows were affected by each of them.

21.1.2.5 About Committing the Changes in the Oracle Implementation of
Standard Batching

After you process the batch, you must still commit the changes, presuming auto-
commit is disabled as recommended.

Chapter 21
Update Batching

21-4

Calling commit, commits nonbatched operations and batched operations for statement
batches that have been processed, but for the Oracle implementation of standard
batching, has no effect on pending statement batches that have not been processed.

21.1.2.6 About Clearing the Batch
To clear the current batch of operations instead of processing it, use the clearBatch
method of the statement object. This method is specified in the standard Statement
interface, which is extended by the standard PreparedStatement and
CallableStatement interfaces.

Keep the following things in mind:

• When a batch is processed, operations are performed in the order in which they
were batched.

• After calling addBatch, you must call either executeBatch or clearBatch before a
call to executeUpdate, otherwise there will be a SQL exception.

• A clearBatch or executeBatch call resets the statement batch to empty.

• The statement batch is not reset to empty if the connection receives a ROLLBACK
request. You must explicitly call clearBatch to reset it.

• Invoking clearBatch method after a rollback works for all releases.

• An executeBatch call closes the current result set of the statement object, if one
exists.

• Nothing is returned by the clearBatch method.

Following is an example that repeats the prepared statement addBatch calls shown
previously but then clears the batch under certain circumstances:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();

if (...condition...)
{
 int[] updateCounts = pstmt.executeBatch();
 ...
}
else
{
 pstmt.clearBatch();
 ...
}

21.1.2.7 Update Counts in the Oracle Implementation of Standard Batching
If a statement batch is processed successfully, then the integer array, or update
counts array, returned by the statement executeBatch call will always have one

Chapter 21
Update Batching

21-5

element for each operation in the batch. In the Oracle implementation of standard
update batching, the values of the array elements are as follows:

• For a prepared statement batch, the array contains the actual update counts
indicating the number of rows affected by each operation.

• For a generic statement batch, the array contains the actual update counts
indicating the number of rows affected by each operation. The actual update
counts can be provided only in the case of generic statements in the Oracle
implementation of standard batching.

• For a callable statement batch, the array contains the actual update counts
indicating the number of rows affected by each operation.

In your code, upon successful processing of a batch, you should be prepared to
handle either -2, 1, or true update counts in the array elements. For a successful batch
processing, the array contains either all -2, 1, or all positive integers.

Example 21-1 illustrates the use of standard update batching.

Example 21-1 Standard Update Batching

This example combines the sample fragments in the previous sections, accomplishing
the following steps:

1. Disabling auto-commit mode, which you should always perform when using
update batching

2. Creating a prepared statement object

3. Adding operations to the batch associated with the prepared statement object

4. Processing the batch

5. Committing the operations from the batch

conn.setAutoCommit(false);

PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();

int[] updateCounts = pstmt.executeBatch();

conn.commit();

pstmt.close();
...

You can process the update counts array to determine if the batch processed
successfully.

Chapter 21
Update Batching

21-6

21.1.2.8 Error Handling in the Oracle Implementation of Standard Batching
If any one of the batched operations fails to complete successfully or attempts to
return a result set during an executeBatch call, then the processing stops and a
java.sql.BatchUpdateException is generated.

After a batch exception, the update counts array can be retrieved using the
getUpdateCounts method of the BatchUpdateException object. This returns an int
array of update counts, just as the executeBatch method does. In the Oracle
implementation of standard update batching, contents of the update counts array are
as follows, after a batch is processed:

• For a prepared statement batch, in case of an error in between execution of the
batch, the executeBatch method cannot return a value, instead it throws a
BatchUpdateException. In this case, the exception itself carries an int array of size
n as its data, where n is the number of successful record executions. For example,
if the batch is of size 5 and the error occurs at the 4th record, then the
BatchUpdateException has an array of size 3 (3 records executed successfully)
and each item in the array represents how many rows were affected by each of
them.

• For a generic statement batch or callable statement batch, the update counts array
is only a partial array containing the actual update counts up to the point of the
error. The actual update counts can be provided because Oracle JDBC cannot
use true batching for generic and callable statements in the Oracle implementation
of standard update batching.

For example, if there were 20 operations in the batch, the first 13 succeeded, and
the 14th generated an exception, then the update counts array will have 13
elements, containing actual update counts of the successful operations.

You can either commit or roll back the successful operations in this situation, as
you prefer.

In your code, upon failed processing of a batch, you should be prepared to handle
either -3 or true update counts in the array elements when an exception occurs. For a
failed batch processing, you will have either a full array of -3 or a partial array of
positive integers.

21.1.2.9 About Intermixing Batched Statements and Nonbatched Statements
You cannot call executeUpdate for regular, nonbatched processing of an operation if
the statement object has a pending batch of operations.

However, you can intermix batched operations and nonbatched operations in a single
statement object if you process nonbatched operations either prior to adding any
operations to the statement batch or after processing the batch. Essentially, you can
call executeUpdate for a statement object only when its update batch is empty. If the
batch is non-empty, then an exception will be generated.

For example, it is valid to have a sequence, such as the following:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);

Chapter 21
Update Batching

21-7

pstmt.setString(2, "Milo Mumford");

int scount = pstmt.executeUpdate(); // OK; no operations in pstmt batch

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch(); // Now start a batch

pstmt.setInt(1, 4000);
pstmt.setString(2, "Stan Leland");
pstmt.addBatch();

int[] bcounts = pstmt.executeBatch();

pstmt.setInt(1, 5000);
pstmt.setString(2, "Amy Feiner");

int scount = pstmt.executeUpdate(); // OK; pstmt batch was executed
...

Intermixing nonbatched operations on one statement object and batched operations
on another statement object within your code is permissible. Different statement
objects are independent of each other with regard to update batching operations. A
COMMIT request will affect all nonbatched operations and all successful operations in
processed batches, but will not affect any pending batches.

21.1.3 Premature Batch Flush
Premature batch flush happens due to a change in cached metadata. Cached
metadata can be changed due to various reasons, such as the following:

• The initial bind was null and the following bind is not null.

• A scalar type is initially bound as string and then bound as scalar type or the
reverse.

The premature batch flush count is summed to the return value of the next
executeUpdate or sendBatch method.

The old functionality lost all these batch flush values which can be obtained now. To
switch back to the old functionality, you can set the AccumulateBatchResult property
to false, as follows:

java.util.Properties info = new java.util.Properties();
info.setProperty("user", "HR");
info.setProperty("passwd", "hr");
// other properties
...

// property: batch flush type
info.setProperty("AccumulateBatchResult", "false");

OracleDataSource ods = new OracleDataSource();
ods.setConnectionProperties(info);
ods.setURL("jdbc:oracle:oci:@"");
Connection conn = ods.getConnection();

Chapter 21
Update Batching

21-8

Note:

The AccumulateBatchResult property is set to true by default.

Example 21-2 illustrates premature batch flushing.

Example 21-2 Premature Batch Flushing

((OraclePreparedStatement)pstmt).setExecuteBatch (2);

pstmt.setNull(1, OracleTypes.NUMBER);
pstmt.setString(2, "test11");
int count = pstmt.executeUpdate(); // returns 0

/*
* Premature batch flush happens here.
*/
pstmt.setInt(1, 22);
pstmt.setString(2, "test22");
int count = pstmt.executeUpdate(); // returns 0

pstmt.setInt(1, 33);
pstmt.setString(2, "test33");
/*
* returns 3 with the new batching scheme where as,
* returns 2 with the old batching scheme.
*/
int count = pstmt.executeUpdate();

21.2 Additional Oracle Performance Extensions
In addition to update batching, Oracle JDBC drivers support the following extensions
that improve performance by reducing round-trips to the database:

• Prefetching rows

This reduces round-trips to the database by fetching multiple rows of data each
time data is fetched. The extra data is stored in client-side buffers for later access
by the client. The number of rows to prefetch can be set as desired.

• Specifying column types

This avoids an inefficiency in the standard JDBC protocol for performing and
returning the results of queries.

• Suppressing database metadata TABLE_REMARKS columns

This avoids an expensive outer join operation.

Oracle provides several extensions to connection properties objects to support these
performance extensions. These extensions enable you to set the remarksReporting
flag and default values for row prefetching and update batching.

This section covers the following topics:

• About Prefetching LOB Data

• Oracle Row-Prefetching Limitations

Chapter 21
Additional Oracle Performance Extensions

21-9

• About Defining Column Types

• About Reporting DatabaseMetaData TABLE_REMARKS

21.2.1 About Prefetching LOB Data
For the JDBC drivers prior to Oracle Database 11g Release 2 JDBC drivers, if you
want to retrieve LOB data in one round trip, then you have to fetch the data as
VARCHAR2 type, that is, you have to use OracleTypes.VARCHAR or
OracleTypes.LONGVARCHAR with the JDBC defineColumnType method. The limitation of
this approach is that when LOB data is fetched as CHAR type, the locator cannot be
fetched along with the data. So, if the application wants to get the LOB data at a later
point of time, or if the application wants to perform other LOB operations, then one
more round trip is required to get the LOB locator, as LOB locator is not available to the
application.

Note:

Array operations on LOB locators are not supported in the JDBC APIs.

Starting from Oracle Database 11g Release 2 JDBC drivers, the number of round trips
is reduced by prefetching frequently used metadata, such as the LOB length and the
chunk size as well as the beginning of the LOB data along with the locator during
regular fetch operations. For small LOBs, the data may be totally prefetched in one
single round trip, that is, the select parse, execution, and fetch occurs in one round
trip, and performance is improved greatly. For large LOBs that are larger than 5 times
the prefetch size, the performance improvement is not very significant as only the
round trip for retrieving the chunk size is not needed.

defaultLobPrefetchSize Connection Property

Starting from Oracle Database 11g Release 2, there is a new connection property
oracle.jdbc.defaultLobPrefetchSize that can be used to set the default LOB
prefetch size for the connection. This connection property is defined as the following
constant: OracleConnection.CONNECTION_PROPERTY_DEFAULT_LOB_PREFETCH_SIZE.
The value of this property is used as the default LOB prefetch size for the current
connection. The default value of this connection property is 4000. If you want to
change the default value at the statement level, then use the setLobPrefetchSize
method defined in oracle.jdbc.OracleStatement interface. You can change the
default value to:

• -1 to disable LOB prefetch for the current connection

• 0 to enable LOB prefetch for metadata only

• Any value greater than 0 to specify the number of bytes for BLOBs and the number
of characters for CLOBs to be prefetched along with the locator during fetch
operations

Use getLobPrefetchSize method defined in oracle.jdbc.OracleStatement interface
to retrieve the LOB prefetch size.

Chapter 21
Additional Oracle Performance Extensions

21-10

You can also set the value of LOB prefetch size at the column level by using the
defineColumnType method. The column-level value overrides any value that is set at
the connection or statement level.

Note:

If LOB prefetch is not disabled at the connection level or statement level, it
cannot be disabled at the column level.

21.2.2 Oracle Row-Prefetching Limitations
There is no maximum prefetch setting. The default value is 10. Larger or smaller
values may be appropriate depending on the number of rows and columns expected
from the query. You can set the default connection row-prefetch value using a
Properties object.

When a statement object is created, it receives the default row-prefetch setting from
the associated connection. Subsequent changes to the default connection row-
prefetch setting will have no effect on the statement row-prefetch setting.

If a column of a result set is of data type LONG, LONG RAW or LOBs returned through the
data interface, that is, the streaming types, then JDBC changes the statement row-
prefetch setting to 1, even if you never actually read a value of either of these types.

Setting the prefetch size can affect the performance of an application. Increasing the
prefetch size will reduce the number of round-trips required to get all the data, but will
increase memory usage. This will depend on the number and size of the columns in
the query and the number of rows expected to be returned. It will also depend on the
memory and CPU loading of the JDBC client machine. The optimum for a standalone
client application will be different from a heavily loaded application server. The speed
and latency of the network connection should also be considered.

Note:

Starting from Oracle Database 11g Release 1, the Thin driver can fetch the
first prefetch_size number of rows from the server in the very first round-
trip. This saves one round-trip in SELECT statements.

If you are migrating an application from earlier releases of Oracle JDBC drivers to 10g
Release 1 (10.1) or later releases of Oracle JDBC drivers, then you should revisit the
optimizations that you had done earlier, because the memory usage and performance
characteristics may have changed substantially.

A common situation that you may encounter is, say, you have a query that selects a
unique key. The query will return only zero or one row. Setting the prefetch size to 1
will decrease memory and CPU usage and cannot increase round-trips. However, you
must be careful to avoid the error of requesting an extra fetch by writing
while(rs.next()) instead of if(rs.next()).

Chapter 21
Additional Oracle Performance Extensions

21-11

If you are using the JDBC Thin driver, then use the useFetchSizeWithLongColumn
connection property, because it will perform PARSE, EXECUTE, and FETCH in a single
round-trip.

Tuning of the prefetch size should be done along with tuning of memory management
in your JVM under realistic loads of the actual application.

Note:

• Do not mix the JDBC 2.0 fetch size application programming interface
(API) and the Oracle row-prefetching API in your application. You can
use one or the other, but not both.

• Be aware that setting the Oracle fetch size value can affect not only
queries, but also explicitly refetching rows in a result set through the
result set refreshRow method, which is relevant for scroll-sensitive/read-
only, scroll-sensitive/updatable, and scroll-insensitive/updatable result
sets, and the window size of a scroll-sensitive result set, affecting how
often automatic refetches are performed. However, the Oracle fetch size
value will be overridden by any setting of the fetch size.

21.2.3 About Defining Column Types

Note:

Starting from Oracle Database 12c Release 1 (12.1), the defineColumnType
method is deprecated.

The implementation of defineColumnType changed significantly since Oracle Database
10g. Previously, defineColumnType was used both as a performance optimization and
to force data type conversion. In previous releases, all of the drivers benefited from
calls to defineColumnType. Starting from Oracle Database 10g, the JDBC Thin driver
no longer needs the information provided. The JDBC Thin driver achieves maximum
performance without calls to defineColumnType. The JDBC Oracle Call Interface (OCI)
and server-side internal drivers still get better performance when the application uses
defineColumnType.

If your code is used with both the JDBC Thin and OCI drivers, you can disable the
defineColumnType method when using the Thin driver by setting the connection
property disableDefineColumnType to true. Doing this makes defineColumnType
have no effect. Do not set this connection property to true when using the JDBC OCI
or server-side internal drivers.

You can also use defineColumnType to control how much memory the client-side
allocates or to limit the size of variable-length data.

Follow these general steps to define column types for a query:

1. If necessary, cast your statement object to OracleStatement,
OraclePreparedStatement, or OracleCallableStatement, as applicable.

Chapter 21
Additional Oracle Performance Extensions

21-12

2. If necessary, use the clearDefines method of your Statement object to clear any
previous column definitions for this Statement object.

3. On each column, call the defineColumnType method of your Statement object,
passing it these parameters:

• Column index (integer)

• Type code (integer)

Use the static constants of the java.sql.Types class or
oracle.jdbc.OracleTypes class, such as Types.INTEGER, Types.FLOAT,
Types.VARCHAR, OracleTypes.VARCHAR, and OracleTypes.ROWID. Type codes
for standard types are identical in these two classes.

• Type name (string)

For structured objects, object references, and arrays, you must also specify
the type name. For example, Employee, EmployeeRef, or EmployeeArray.

• Maximum field size (integer)

Optionally specify a maximum data length for this column.

You cannot specify a maximum field size parameter if you are defining the
column type for a structured object, object reference, or array. If you try to
include this parameter, it will be ignored.

• Form of use (short)

Optionally specify a form of use for the column. This can be
OraclePreparedStatement.FORM_CHAR to use the database character set or
OraclePreparedStatement.FORM_NCHAR to use the national character set. If
this parameter is omitted, the default is FORM_CHAR.

For example, assuming stmt is an Oracle statement, use:

stmt.defineColumnType(column_index, typeCode);

If the column is VARCHAR or equivalent and you know the length limit:

stmt.defineColumnType(column_index, typeCode, max_size);

For an NVARCHAR column where the original maximum length is desired and
conversion to the database character set is requested:

stmt.defineColumnType(column_index, typeCode, 0,
 OraclePreparedStatement.FORM_CHAR);

For structured object, object reference, and array columns:

stmt.defineColumnType(column_index, typeCode, typeName);

Set a maximum field size if you do not want to receive the full default length of the
data. Calling the setMaxFieldSize method of the standard JDBC Statement class
sets a restriction on the amount of data returned. Specifically, the size of the data
returned will be the minimum of the following:

• The maximum field size set in defineColumnType

• The maximum field size set in setMaxFieldSize

• The natural maximum size of the data type

Chapter 21
Additional Oracle Performance Extensions

21-13

After you complete these steps, use the executeQuery method of the statement to
perform the query.

Note:

It is no longer necessary to specify a data type for each column of the
expected result set.

The following example illustrates the use of this feature. It assumes you have imported
the oracle.jdbc.* interfaces.

Example 21-3 Defining Column Types

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:thin:@localhost:5221:orcl");
ods.setUser("HR");
ods.setPassword("hr");
Connection conn = ods.getConnection();

Statement stmt = conn.createStatement();
// Allocate only 2 chars for this column (truncation will happen)
((OracleStatement)stmt).defineColumnType(1, Types.VARCHAR, 2);
ResultSet rset = stmt.executeQuery("select ename from emp");
while(rset.next())
 System.out.println(rset.getString(1));
stmt.close();

As this example shows, you must cast the Statement object, stmt, to
OracleStatement in the invocation of the defineColumnType method. The
createStatement method of the connection returns an object of type
java.sql.Statement, which does not have the defineColumnType and clearDefines
methods. These methods are provided only in the OracleStatement implementation.

The define-extensions use JDBC types to specify the desired types. The allowed
define types for columns depend on the internal Oracle type of the column.

All columns can be defined to their natural JDBC types. In most cases, they can be
defined to the Types.CHAR or Types.VARCHAR type code.

The following table lists the valid column definition arguments that you can use in the
defineColumnType method.

Table 21-1 Valid Column Type Specifications

If the column has Oracle
SQL type:

You can use defineColumnType to define it as:

NUMBER, VARNUM BIGINT, TINYINT, SMALLINT, INTEGER, FLOAT, REAL,
DOUBLE, NUMERIC, DECIMAL, CHAR, VARCHAR

CHAR, VARCHAR2 CHAR, VARCHAR

LONG CHAR, VARCHAR, LONGVARCHAR

LONGRAW LONGVARBINARY, VARBINARY, BINARY

RAW VARBINARY, BINARY

Chapter 21
Additional Oracle Performance Extensions

21-14

Table 21-1 (Cont.) Valid Column Type Specifications

If the column has Oracle
SQL type:

You can use defineColumnType to define it as:

DATE DATE, TIME, TIMESTAMP, CHAR, VARCHAR

ROWID ROWID

BLOB VARBINARY, BINARY

CLOB LONG, CHAR, VARCHAR

It is always valid to use defineColumnType with the original data type of the column.

21.2.4 About Reporting DatabaseMetaData TABLE_REMARKS
The getColumns, getProcedureColumns, getProcedures, and getTables methods of
the database metadata classes are slow if they must report TABLE_REMARKS columns,
because this necessitates an expensive outer join. For this reason, the JDBC driver
does not report TABLE_REMARKS columns by default.

You can enable TABLE_REMARKS reporting by passing a true argument to the
setRemarksReporting method of an OracleConnection object.

Equivalently, instead of calling setRemarksReporting, you can set the
remarksReporting Java property if you use a Java Properties object in establishing
the connection.

If you are using a standard java.sql.Connection object, you must cast it to
OracleConnection to use setRemarksReporting.

The following code snippet illustrates how to enable TABLE_REMARKS reporting:

((oracle.jdbc.OracleConnection)conn).setRemarksReporting(true);

Here, conn is the name of your standard Connection object, the following statement
enables TABLE_REMARKS reporting:

Considerations for getColumns

By default, the getColumns method does not retrieve information about the columns if
a synonym is specified. To enable the retrieval of information if a synonym is specified,
you must call the setIncludeSynonyms method on the connection as follows:

((oracle.jdbc.OracleConnection)conn).setIncludeSynonyms(true)

This will cause all subsequent getColumns method calls on the connection to include
synonyms. This is similar to setRemarksReporting. Alternatively, you can set the
includeSynonyms connection property. This is similar to the remarksReporting
connection property.

However, bear in mind that if includeSynonyms is true, then the name of the object
returned in the table_name column will be the synonym name, if a synonym exists.
This is true even if you pass the table name to getColumns.

Chapter 21
Additional Oracle Performance Extensions

21-15

Considerations for getProcedures and getProcedureColumns Methods

According to JDBC versions 1.1 and 1.2, the methods getProcedures and
getProcedureColumns treat the catalog, schemaPattern, columnNamePattern, and
procedureNamePattern parameters in the same way. In the Oracle definition of these
methods, the parameters are treated differently:

• catalog

Oracle does not have multiple catalogs, but it does have packages. Consequently,
the catalog parameter is treated as the package name. This applies both on input,
which is the catalog parameter, and the output, which is the catalog column in
the returned ResultSet. On input, the construct " ", which is an empty string,
retrieves procedures and arguments without a package, that is, standalone
objects. A null value means to drop from the selection criteria, that is, return
information about both standalone and packaged objects. That is, it has the same
effect as passing in the percent sign (%). Otherwise, the catalog parameter should
be a package name pattern, with SQL wild cards, if desired.

• schemaPattern

All objects within Oracle database must have a schema, so it does not make
sense to return information for those objects without one. Thus, the construct " ",
which is an empty string, is interpreted on input to mean the objects in the current
schema, that is, the one to which you are currently connected. To be consistent
with the behavior of the catalog parameter, null is interpreted to drop the schema
from the selection criteria. That is, it has the same effect as passing in %. It can
also be used as a pattern with SQL wild cards.

• procedureNamePattern and columnNamePattern

The empty string (" ") does not make sense for either parameter, because all
procedures and arguments must have names. Thus, the construct " " will raise an
exception. To be consistent with the behavior of other parameters, null has the
same effect as passing in percent sign (%).

Chapter 21
Additional Oracle Performance Extensions

21-16

22
Support for Reactive Streams Ingestion

Oracle Database Release 19c introduces a Java library that provides support for
reactive streams ingestion, which enables customers to efficiently stream data into
Oracle Database.

This chapter contains the following topics:

• Overview of Java library for Reactive Streams Ingestion

• Architecture of Java Library for Reactive Streams Ingestion

• Limitations of Java library for Reactive Streams Ingestion

22.1 Overview of Java library for Reactive Streams
Ingestion

The new Java library enables Java applications to continuously receive and
ingest data from a large group of clients. IoT agents or Telco applications that need to
persist large amount of records in the form of rows in an Oracle Database table, can
make use of this library. Using the direct path load method of Oracle Database for
inserting data, it makes the ingestion process nonblocking and extremely fast.
Moreover, with the use of Universal Connection Pool (UCP), the library also furnishes
several high-availability and scalability features of the database, like support for table
partitions, Oracle RAC connection affinity, and sharding.

22.2 Architecture of Java Library for Reactive Streams
Ingestion

The new Java library enables customers to efficiently stream data into the Oracle
Database when a large number of clients use the database to persist information in
the form of table rows and do not want to be blocked waiting for a synchronous
response from the database. This library consists of the following modules:

• Reactive Streams Ingestion (RSI) Library
This is the core module that exposes the API to handle the logic. It supports the
Memoptimized RowStore Fast Ingest feature of Oracle Database Release 19c to
persist the user information in the database quickly and seamlessly. It uses UCP
for connection pooling and management, including sharding topology knowledge
and Fast Application Notification (FAN) awareness for an Oracle Real Application
Cluster (RAC) database.

For using this library, you must have the following JAR files added to your
CLASSPATH:

– fis.jar

– ojdbc9.jar

22-1

– ucp.jar

– ons.jar

• JDBC APIs
This module is a collection of enhanced JDBC APIs that adds support for direct
path load with the new prepareDirectPath method provided in the
OracleConnection interface, which creates a new interface that is derived from the
PreparedStatement interface. The use of this interface is transparent to the end
user and you need to make very little change to your application code for
performing a direct path load operation.

The following code snippet shows how to use this feature:

PreparedStatement preparedStatement = oracleConnection.
prepareDirectPath("SCOTT", "EMP", new String[] {"EMPNO", "ENAME"});
in a loop {
 preparedStatement.setInt(1, someIntValue);
 preparedStatement.setString(2, someStringValue):
 preparedStatement.addBatch();
}
preparedStatement.executeBatch();
oracleConnection.commit(); // or
oracleConnection.rollback();

• UCP Library
This module is an extension of the existing UCP APIs that extract the sharding
topology for a sharded database and listen for FAN events. The HSI library uses
UCP to be able to re-use connections properly.

The UCP library recognizes the sharding keys specified by the users and allows
them to connect to the specific shard and chunk. As new connections are created,
UCP caches the sharding-key ranges to the location of the shard and allows
further connection requests to bypass the Global Service Manager (shard
director), enabling a faster path key access. UCP can also select an available
connection in the pool by providing sharding keys. This enables re-usage of
connections to various shards by using the cached routing topology.

The RSI library uses the sharding APIs exposed by UCP to get a proper
connection for the specified sharding key. Each record in RSI can be mapped to a
specific unique chunk id and then these records can be grouped together using
the unique chunk id. When the RSI library has enough records to send to the
database, then it borrows a chunk specific connection from UCP and uses that
connection to insert the record into the sharded database.

22.3 Limitations of Java library for Reactive Streams
Ingestion

Reactive streams ingestion of data streams may not ingest all the data into the
database in case of unexpected crashes or errors because the library may lose some
of the records while trying to store them in the database. The amount of data loss
depends on the following two values:

• MaxNoOfRecord

Chapter 22
Limitations of Java library for Reactive Streams Ingestion

22-2

This is the maximum amount of records to buffer in memory. This value is the
maximum amount of records that might be lost in case of a database crash. There
is a tradeoff between performance and the potential loss of records.

• MaxBufferInterval
This is the maximum amount of time to hold a record in memory. If the value of
this parameter is low, then the number of records in memory that might be lost is
also less. There is a tradeoff between performance and the potential loss of
records.

Apart from the possibility of data loss due to database crashes, this library has the
following limitations:

• Triggers are not supported.

• Referential integrity is not checked.

• Clustered tables are not supported.

• Loading of remote objects is not supported.

• LONG data type must be specified as the last column.

• LONG data type with streams is not supported

• Loading of VARRAY columns is not supported.

• All partitioning columns must appear before any LOB data type.

Chapter 22
Limitations of Java library for Reactive Streams Ingestion

22-3

23
OCI Connection Pooling

The Java Database Connectivity (JDBC) Oracle Call Interface (OCI) driver connection
pooling functionality is part of the JDBC client. This functionality is provided by the
OracleOCIConnectionPool class.

A JDBC application can have multiple pools at the same time. Multiple pools can
correspond to multiple application servers or pools to different data sources. The
connection pooling provided by the JDBC OCI driver enables applications to have
multiple logical connections, all using a small set of physical connections. Each call on
a logical connection gets routed on to the physical connection that is available at the
time of call.

This chapter contains the following sections:

• Background of OCI Driver Connection Pooling

• Comparison Between OCI Driver Connection Pooling and Shared Servers

• About Defining an OCI Connection Pool

• About Connecting to an OCI Connection Pool

• Sample Code for OCI Connection Pooling

• Statement Handling and Caching

• JNDI and the OCI Connection Pool

Note:

Use OCI connection pooling if you need session multiplexing. Otherwise,
Oracle recommends using Universal Connection Pool.

23.1 Background of OCI Driver Connection Pooling
The Oracle JDBC OCI driver provides several transaction monitor capabilities, such as
the fine-grained management of Oracle sessions and connections. It is possible for a
high-end application server or transaction monitor to multiplex several sessions over
fewer physical connections on a call-level basis, thereby achieving a high degree of
scalability by pooling of connections and back-end Oracle server processes.

The connection pooling provided by the OracleOCIConnectionPool interface simplifies
the session/connection separation interface hiding the management of the physical
connection pool. The Oracle sessions are the OracleOCIConnection objects obtained
from OracleOCIConnectionPool. The connection pool itself is usually configured with a
much smaller shared pool of physical connections, translating to a back-end server
pool containing an identical number of dedicated server processes. Note that many
more Oracle sessions can be multiplexed over this pool of fewer shared connections
and back-end Oracle processes.

23-1

23.2 Comparison Between OCI Driver Connection Pooling
and Shared Servers

In some ways, what OCI driver connection pooling offers on the middle tier is similar to
what shared server processes offer on the back end. OCI driver connection pooling
makes a dedicated server instance behaves as a shared instance by managing the
session multiplexing logic on the middle tier. Therefore, the pooling of dedicated server
processes and incoming connections into the dedicated server processes is controlled
by the OCI connection pool on the middle tier.

The main difference between OCI connection pooling and shared servers is that in the
case of shared servers, the connection from the client is typically to a dispatcher in the
database instance. The dispatcher is responsible for directing the client request to an
appropriate shared server. On the other hand, the physical connection from the OCI
connection pool is established directly from the middle tier to the Oracle dedicated
server process in the back-end server pool.

Note that OCI connection pool is mainly beneficial only if the middle tier is
multithreaded. Each thread could maintain a session to the database. The actual
connections to the database are maintained by OracleOCIConnectionPool, and these
connections, including the pool of dedicated database server processes, are shared
among all the threads in the middle tier.

23.3 About Defining an OCI Connection Pool
This section describes the following concepts:

• Overview of Creating an OCI Connection Pool

• Importing the oracle.jdbc.pool and oracle.jdbc.oci Packages

• Creating an OCI Connection Pool

• Setting the OCI Connection Pool Parameters

• Checking the OCI Connection Pool Status

23.3.1 Overview of Creating an OCI Connection Pool
An OCI connection pool is created at the beginning of the application. Creating
connections from a pool is quite similar to creating connections using the
OracleDataSource class.

The oracle.jdbc.pool.OracleOCIConnectionPool class, which extends the
OracleDataSource class, is used to create OCI connection pools. From an
OracleOCIConnectionPool instance, you can obtain logical connection objects. These
connection objects are of the OracleOCIConnection class type. This class implements
the OracleConnection interface. The Statement objects you create from the
OracleOCIConnection instance have the same fields and methods as
OracleStatement objects you create from OracleConnection instances.

The following code shows header information for the OracleOCIConnectionPool class:

/*
 * @param us ConnectionPool user-id.

Chapter 23
Comparison Between OCI Driver Connection Pooling and Shared Servers

23-2

 * @param p ConnectionPool password
 * @param name logical name of the pool. This needs to be one in the
 * tnsnames.ora configuration file.
 @param config (optional) Properties of the pool, if the default does not
 suffice. Default connection configuration is min =1, max=1,
 incr=0
 Please refer setPoolConfig for property names.

 Since this is optional, pass null if the default configuration
 suffices.

 * @return
 *
 * Notes: Choose a userid and password that can act as proxy for the users
 * in the getProxyConnection() method.

 If config is null, then the following default values will take
 effect
 CONNPOOL_MIN_LIMIT = 1
 CONNPOOL_MAX_LIMIT = 1
 CONNPOOL_INCREMENT = 0

*/

public synchronized OracleOCIConnectionPool
 (String user, String password, String name, Properties config)
 throws SQLException

/*
 * This will use the user-id, password and connection pool name values set
 LATER using the methods setUser, setPassword, setConnectionPoolName.

 * @return
 *
 * Notes:

 No OracleOCIConnection objects can be created on
 this class unless the methods setUser, setPassword, setPoolConfig
 are invoked.
 When invoking the setUser, setPassword later, choose a userid and
 password that can act as proxy for the users
 * in the getProxyConnection() method.
 */
 public synchronized OracleOCIConnectionPool ()
 throws SQLException

23.3.2 Importing the oracle.jdbc.pool and oracle.jdbc.oci Packages
Before you create an OCI connection pool, import the following to have Oracle OCI
connection pooling functionality:

import oracle.jdbc.pool.*;
import oracle.jdbc.oci.*;

23.3.3 Creating an OCI Connection Pool
The following code show how you create an instance of the OracleOCIConnectionPool
class called cpool:

Chapter 23
About Defining an OCI Connection Pool

23-3

OracleOCIConnectionPool cpool = new OracleOCIConnectionPool
 ("HR", "hr", "jdbc:oracle:oci:@(description=(address=(host=
 localhost)(protocol=tcp)(port=5221))(connect_data=(INSTANCE_NAME=orcl)))",
 poolConfig);

poolConfig is a set of properties that specify the connection pool. If poolConfig is null,
then the default values are used. For example, consider the following:

• poolConfig.put (OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT, "4");

• poolConfig.put (OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT, "10");

• poolConfig.put (OracleOCIConnectionPool.CONNPOOL_INCREMENT, "2");

As an alternative to the constructor call, you can create an instance of the
OracleOCIConnectionPool class using individual methods to specify the user,
password, and connection string.

OracleOCIConnectionPool cpool = new OracleOCIConnectionPool ();
cpool.setUser("HR");
cpool.setPassword("hr");
cpool.setURL("jdbc:oracle:oci:@(description=(address=(host=
 localhost)(protocol=tcp)(port=5221))(connect_data=(INSTANCE_NAME=orcl)))");
cpool.setPoolConfig(poolConfig); // In case you want to specify a different
 // configuration other than the default
 // values.

23.3.4 Setting the OCI Connection Pool Parameters
The connection pool configuration is determined by the following
OracleOCIConnectionPool class attributes:

• CONNPOOL_MIN_LIMIT

Specifies the minimum number of physical connections that can be maintained by
the pool.

• CONNPOOL_MAX_LIMIT

Specifies the maximum number of physical connections that can be maintained by
the pool.

• CONNPOOL_INCREMENT

Specifies the incremental number of physical connections to be opened when all
the existing ones are busy and a call needs one more connection; the increment is
done only when the total number of open physical connections is less than the
maximum number that can be opened in that pool.

• CONNPOOL_TIMEOUT

Specifies how much time must pass before an idle physical connection is
disconnected; this does not affect a logical connection.

• CONNPOOL_NOWAIT

Specifies, if enabled, that an error is returned if a call needs a physical connection
while the maximum number of connections in the pool are busy. If disabled, a call
waits until a connection is available. Once this attribute is set to true, it cannot be
reset to false.

You can configure all of these attributes dynamically. Therefore, an application has the
flexibility of reading the current load, that is number of open connections and number

Chapter 23
About Defining an OCI Connection Pool

23-4

of busy connections, and adjusting these attributes appropriately, using the
setPoolConfig method.

Note:

The default values for the CONNPOOL_MIN_LIMIT, CONNPOOL_MAX_LIMIT, and
CONNPOOL_INCREMENT parameters are 1, 1, and 0, respectively.

The setPoolConfig method is used to configure OCI connection pool properties. The
following is a typical example of how the OracleOCIConnectionPool class attributes
can be set:

...
java.util.Properties p = new java.util.Properties();
p.put (OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT, "1");
p.put (OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT, "5");
p.put (OracleOCIConnectionPool.CONNPOOL_INCREMENT, "2");
p.put (OracleOCIConnectionPool.CONNPOOL_TIMEOUT, "10");
p.put (OracleOCIConnectionPool.CONNPOOL_NOWAIT, "true");
cpool.setPoolConfig(p);
...

Observe the following rules when setting these attributes:

• CONNPOOL_MIN_LIMIT, CONNPOOL_MAX_LIMIT, and CONNPOOL_INCREMENT are
mandatory.

• CONNPOOL_MIN_LIMIT must be a value greater than zero.

• CONNPOOL_MAX_LIMIT must be a value greater than or equal to
CONNPOOL_MIN_LIMIT plus CONNPOOL_INCREMENT.

• CONNPOOL_INCREMENT must be a value greater than or equal to zero.

• CONNPOOL_TIMEOUT must be a value greater than zero.

• CONNPOOL_NOWAIT must be true or false.

See Also:

Oracle Call Interface Programmer's Guide

23.3.5 Checking the OCI Connection Pool Status

To check the status of the connection pool, use the following methods from the
OracleOCIConnectionPool class:

• int getMinLimit()

Retrieves the minimum number of physical connections that can be maintained by
the pool.

• int getMaxLimit()

Chapter 23
About Defining an OCI Connection Pool

23-5

Retrieves the maximum number of physical connections that can be maintained by
the pool.

• int getConnectionIncrement()

Retrieves the incremental number of physical connections to be opened when all
the existing ones are busy and a call needs a connection.

• int getTimeout()

Retrieves the specified time (in seconds) that a physical connection in a pool can
remain idle before it is disconnected; the age of a connection is based on the
Least Recently Used (LRU) algorithm.

• String getNoWait()

Retrieves if the NOWAIT property is enabled. It returns a string of "true" or "false".

• int getPoolSize()

Retrieves the number of physical connections that are open. This should be used
only as an estimate and for statistical analysis.

• int getActiveSize()

Retrieves the number of physical connections that are open and busy. This should
be used only as an estimate and for statistical analysis.

• boolean isPoolCreated()

Retrieves if the pool has been created. The pool is actually created when
OracleOCIConnection(user, password, url, poolConfig) is called or when
setUser, setPassword, and setURL has been done after calling
OracleOCIConnection().

23.4 About Connecting to an OCI Connection Pool
The OracleOCIConnectionPool class, through a getConnection method call, creates
an instance of the OracleOCIConnection class. This instance represents a connection.

Because the OracleOCIConnection class extends OracleConnection class, it has the
functionality of this class too. Close the OracleOCIConnection objects once the user
session is over, otherwise, they are closed when the pool instance is closed.

There are two ways of calling getConnection:

• OracleConnection getConnection()

If you do not supply the user name and password, then the default user name and
password used for the creation of the connection pool are used while creating the
connection objects.

• OracleConnection getConnection(String user, String password)

If you this method, you will get a logical connection identified with the specified
user name and password, which can be different from that used for pool creation.

The following code shows the signatures of the overloaded getConnection method:

public synchronized OracleConnection getConnection()
 throws SQLException

/*
 * For getting a connection to the database.

Chapter 23
About Connecting to an OCI Connection Pool

23-6

 *
 * @param us Connection user-id
 * @param p Connection password
 * @return connection object
 */
public synchronized OracleConnection getConnection(String us, String p)
throws SQLException

As an enhancement to OracleConnection, the following new method is added into
OracleOCIConnection as a way to change the password for the user:

void passwordChange (String user, String oldPassword, String newPassword)

23.5 Sample Code for OCI Connection Pooling
The following code illustrates the use of OCI connection pooling in a sample
application:

import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Properties;
import oracle.jdbc.OracleDriver;
import oracle.jdbc.pool.OracleOCIConnectionPool;

public class conPoolAppl extends Thread
{
 public static final String query = "SELECT object_name FROM all_objects WHERE
rownum < 300";
 static public void main(String args[]) throws SQLException
 {
 int _maxCount = 10;
 Connection []conn = new Connection[_maxCount];
 try
 {
 String s = null; //System.getProperty ("JDBC_URL");
 String url = "jdbc:oracle:oci8:@localhost";
 OracleOCIConnectionPool cpool = new OracleOCIConnectionPool("HR", "hr", url,
null);

 // Print out the default configuration for the OracleOCIConnectionPool
 System.out.println ("-- The default configuration for the
OracleOCIConnectionPool --");
 displayPoolConfig(cpool);

 //Set up the initial pool configuration
 Properties p1 = new Properties();
 p1.put (OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT, Integer.toString(1));
 p1.put (OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT,
Integer.toString(_maxCount));
 p1.put (OracleOCIConnectionPool.CONNPOOL_INCREMENT, Integer.toString(1));

 // Enable the initial configuration
 cpool.setPoolConfig(p1);

 Thread []t = new Thread[_maxCount];
 for (int i = 0; i < _maxCount; ++i)
 {

Chapter 23
Sample Code for OCI Connection Pooling

23-7

 conn[i] = cpool.getConnection("HR", "hr");
 if (conn[i] == null)
 {
 System.out.println("Unable to create connection.");
 return;
 }
 t[i] = new conPoolAppl (i, conn[i]);
 t[i].start ();
 //displayPoolConfig(cpool);
 }

 ((conPoolAppl)t[0]).startAllThreads ();
 try
 {
 Thread.sleep (200);
 }
 catch (Exception ea) {}

 displayPoolConfig(cpool);
 for (int i = 0; i < _maxCount; ++i)
 t[i].join ();
 }
 catch(Exception ex)
 {
 System.out.println("Error: " + ex);
 ex.printStackTrace ();
 return;
 }
 finally
 {
 for (int i = 0; i < _maxCount; ++i)
 if (conn[i] != null)
 conn[i].close ();
 }
 } //end of main

 private Connection m_conn;
 private static boolean m_startThread = false;
 private int m_threadId;

 public conPoolAppl (int i, Connection conn)
 {
 m_threadId = i;
 m_conn = conn;
 }

 public void startAllThreads ()
 {
 m_startThread = true;
 }

 public void run ()
 {
 while (!m_startThread) Thread.yield ();
 try
 {
 doQuery (m_conn);
 }
 catch (SQLException ea)
 {
 System.out.println ("*** Thread id: " + m_threadId);

Chapter 23
Sample Code for OCI Connection Pooling

23-8

 ea.printStackTrace ();
 }
 } // end of run

 private static void doQuery (Connection conn) throws SQLException
 {
 PreparedStatement pstmt = null;
 ResultSet rs = null;
 try
 {
 pstmt = conn.prepareStatement (query);
 rs = pstmt.executeQuery ();
 while (rs.next ())
 {
 //System.out.println ("Object name: " +rs.getString (1));
 }
 }
 catch (Exception ea)
 {
 System.out.println ("Error during execution: " +ea);
 ea.printStackTrace ();
 }
 finally
 {
 if (rs != null)
 rs.close ();
 if (pstmt != null)
 pstmt.close ();
 if (conn != null)
 conn.close ();
 }
 } // end of doQuery (Connection)

 // Display the current status of the OracleOCIConnectionPool
 private static void displayPoolConfig (OracleOCIConnectionPool cpool) throws
SQLException
 {
 System.out.println (" Min poolsize Limit: " + cpool.getMinLimit());
 System.out.println (" Max poolsize Limit: " + cpool.getMaxLimit());
 /*
 System.out.println (" Connection Increment: " + cpool.getConnectionIncrement());
 System.out.println (" NoWait: " + cpool.getNoWait());
 System.out.println (" Timeout: " + cpool.getTimeout());
 */
 System.out.println (" PoolSize: " + cpool.getPoolSize());
 System.out.println (" ActiveSize: " + cpool.getActiveSize());
 }

} // end of class conPoolAppl

23.6 Statement Handling and Caching
Statement caching is supported with OracleOCIConnectionPool. The caching
improves performance by not having to open, parse, and close cursors. When
OracleOCIConnection.prepareStatement ("a_SQL_query") is processed, the
statement cache is searched for a statement that matches the SQL query. If a match is
found, then you can reuse the Statement object instead of incurring the cost of
creating another Statement object. The cache size can be dynamically increased or
decreased. The default cache size is zero.

Chapter 23
Statement Handling and Caching

23-9

Note:

The OracleStatement object created from OracleOCIConnection has the
same behavior as one that is created from OracleConnection.

23.7 JNDI and the OCI Connection Pool
The Java Naming and Directory Interface (JNDI) feature makes the properties of a
Java object persist, therefore these properties can be used to construct a new
instance of the object, such as cloning the object. The benefit is that the old object can
be freed, and at a later time a new object with exactly the same properties can be
created. The InitialContext.bind method makes the properties persist, either on file
or in a database, while the InitialContext.lookup method retrieves the properties
from the persistent store and creates a new object with these properties.

OracleOCIConnectionPool objects can be bound and looked up using the JNDI
feature. No new interface calls in OracleOCIConnectionPool are necessary.

Chapter 23
JNDI and the OCI Connection Pool

23-10

24
Database Resident Connection Pooling

Database Resident Connection Pool (DRCP) is a connection pool in the server that is
shared across many clients. You should use DRCP in connection pools where the
number of active connections is fairly less than the number of open connections. As
the number of instances of connection pools that can share the connections from
DRCP pool increases, the benefits derived from using DRCP increases. DRCP
increases Database server scalability and resolves the resource wastage issue that is
associated with middle-tier connection pooling.

This chapter contains the following sections:

• Overview of Database Resident Connection Pooling

• Enabling Database Resident Connection Pooling

• About Sharing Pooled Servers Across Multiple Connection Pools

• DRCP Tagging

• PL/SQL Callback for Session State Fix Up

• APIs for Using DRCP

24.1 Overview of Database Resident Connection Pooling
In middle-tier connection pools, every connection cache maintains a minimum number
of connections to the server. Each connection represents used up resources at the
server. All these open connections are not utilized at any given time, which means that
there are unused resources that unnecessarily take up server resources. In a multiple
middle-tier scenario, these connections are not shared with any other middle tier and
are retained in the cache even if some of these are idle. However, a large number of
such middle-tier connection pools increase the number of inactive connections to the
Database server significantly and waste a lot of Database resources because all the
connections do not remain active simultaneously.

For example, in a middle-tier connection pool, if the minimum pool size is 200, then the
connection pool has 200 connections to the server, and the Database server has 200
server processes associated with these connections. If there are 30 middle tiers with a
connection pool of minimum size 200, then the server has 6000 (200 * 30)
corresponding server processes running. Typically, on an average only 5% of the
connections, and in turn, server processes are in use at any given time. So, out of the
6,000 server processes, only 300 server processes are active at any given time. This
leads to over 5,700 unused server processes on the server. These unused processes
are the wasted resources on the server.

The Database Resident Connection Pool implementation creates a pool on the server
side, which is shared across multiple client pools. This significantly lowers memory
consumption on the server because of reduced number of server processes on the
server and increases the scalability of the Database server.

24-1

See Also:

• Oracle Database Concepts

• Oracle Database Administrator’s Guide

24.2 Enabling Database Resident Connection Pooling
This section describes how to enable DRCP in the server side and the client side:

• Enabling DRCP on the Server Side

• Enabling DRCP on the Client Side

24.2.1 Enabling DRCP on the Server Side
You must be a database administrator (DBA) and must log on as SYSDBA to start and
end a pool. This section discusses the following concepts:

• Starting the Default Connection Pool

• Configuring the Default Connection Pool

• Ending a Pool

• Setting the Statement Cache Size

Note:

The features of DRCP can be leveraged only with a connection pool on the
client because JDBC does not have a default pool on its own. If you do not
have a client connection pool and make any change to the Database with
auto commit set to false, then the changes are not committed to the
Database while closing the connection.

Starting the Default Connection Pool

Run the dbms_connection_pool.start_pool method with the default settings to start
the Oracle Database default connection pool, SYS_DEFAULT_CONNECTION_POOL. For
example:

sqlplus /nolog
connect / as sysdba
execute dbms_connection_pool.start_pool();

Configuring the Default Connection Pool

The default connection pool is configured using default parameter values. You can use
the procedures in the DBMS_CONNECTION_POOL package to configure the connection
pool for Database Resident Connection Pooling.

Oracle Database 12c Release 2 (12.2.0.1) introduced the MAX_TXN_THINK_TIME
parameter, which is a new parameter for specifying the think timeout for pooled

Chapter 24
Enabling Database Resident Connection Pooling

24-2

servers with transactions in progress. The think timeout is the maximum time of
inactivity, in seconds, for a client after it obtains a pooled server from the pool.

See Also:

Oracle Database Administrator’s Guide for more information about
configuration parameters

Ending a Pool

Run the dbms_connection_pool.stop_pool method with the default settings to end the
pool. For example:

sqlplus /nolog
connect / as sysdba
execute dbms_connection_pool.stop_pool();

Setting the Statement Cache Size

If you use DRCP, caching is also done at the server side. So, you must specify the
statement cache size on the server side in the following way, where 50 is the preferred
size:

execute DBMS_CONNECTION_POOL.CONFIGURE_POOL (session_cached_cursors=>50);

Related Topics

• About Statement Caching

24.2.2 Enabling DRCP on the Client Side
Perform the following steps to enable DRCP on the client side:

Note:

The example in this section uses Universal Connection Pool as the client-
side connection pool. For any other connection pools, you can enable DRCP
by performing the following two steps and using
oracle.jdbc.pool.OracleConnectionPoolDataSource as the connection
factory.

• Pass a non-null and non-empty String value to the connection property
oracle.jdbc.DRCPConnectionClass

• Append (SERVER=POOLED) to the CONNECT_DATA in the long connection string

You can also specify (SERVER=POOLED) in short URL from as follows:

jdbc:oracle:thin:@//<host>:<port>/<service_name>[:POOLED]

For example:

jdbc:oracle:thin:@//localhost:5221/orcl:POOLED

Chapter 24
Enabling Database Resident Connection Pooling

24-3

The following example shows how to enable DRCP on client side:

Note:

In UCP, if you do not provide a connection class, then the connection pool
name is used as the connection class name by default.

Example 24-1 Enabling DRCP on Client Side Using Universal Connection Pool

String url = "jdbc:oracle:thin:@//localhost:5521/orcl:POOLED";
PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
// Set DataSource Property
pds.setUser("HR");
pds.setPassword("hr");
System.out.println ("Connecting to " + url);
pds.setURL(url);
pds.setConnectionPoolName("HR-Pool1");
pds.setMinPoolSize(2);
pds.setMaxPoolSize(3);
pds.setInitialPoolSize(2);
Properties prop = new Properties();
prop.put("oracle.jdbc.DRCPConnectionClass", "HR-Pool1");
pds.setConnectionProperties(prop);

24.3 About Sharing Pooled Servers Across Multiple
Connection Pools

To share pooled server processes on the server across multiple Connection pools, set
the same DRCP Connection class name for all the pooled server processes on the
server. You can set the DRCP Connection class name using the connection property
oracle.jdbc.DRCPConnectionClass.

24.4 DRCP Tagging
DRCP enables you to request the server connection pool to associate a server
process with a particular tag name. You can apply a tag to a given connection and
retrieve that tagged connection later. Connection tagging enhances session pooling
because you can retrieve specific sessions easily.

Starting from Oracle Database 12c Release 2 (12.2.0.1), DRCP provides support for
multiple tagging. By default, this feature is disabled because of compatibility factor with
existing DRCP applications. Set the oracle.jdbc.UseDRCPMultipletag connection
property to TRUE for enabling this feature in your DRCP application.

Once you enable the multiple tagging feature, then the same APIs that you used for
setting DRCP tags, can be used for setting multiple DRCP tags, only difference being
the separator. Key and value of a DRCP tag are separated by an equal (=) character
and multiple tags are separated by a semi-colon (;) character.

Remember the following points while working with DRCP tags:

• Key and value of a tag cannot be NULL or Empty.

Chapter 24
About Sharing Pooled Servers Across Multiple Connection Pools

24-4

• When you specify multiple tags, then the leftmost tag has the highest priority and
the rightmost tag has the lowest priority.

• While retrieving a tagged connection, if a complete match is not found (all tags are
not matched), then it searches for a partial match.

Note:

Starting from Oracle Database 12c Release 2 (12.2.0.1), DRCP sessions
belonging to the same database user, but different proxy users, can be
shared among the proxy users.

See Also:

Oracle Call Interface Programmer's Guide for more information about
session pooling and connection tagging

24.5 PL/SQL Callback for Session State Fix Up
Starting from Oracle Database 12c Release 2 (12.2.0.1), a PL/SQL based fix-up
callback for the session state can be provided on the server. This application-provided
callback transforms a session checked out from the pool to the desired state
requested by the application. This callback works with or without Database Resident
Connection Pooling (DRCP).

Note:

The PL/SQL based fix-up callback is only applicable for multiple tagging.

Using this callback can improve the performance of your application because the fix-
up logic is run for the session state on the server. So, this feature eliminates
application round-trips to the database for the fix-up logic. An appropriate installation
user, who must be granted execute permissions on the related package, should
register the fix-up callback during application installation.

Example 24-2 Example of PL/SQL Fix-Up Callback

Following is an example implementation of the PL/SQL fix up callback to fix up the
session properties SCHEMA and CURRENCY:

CREATE OR REPLACE PACKAGE mycb_pack AS
PROCEDURE mycallback (
desired_props IN VARCHAR2,
actual_props IN VARCHAR2
);
END;
/

Chapter 24
PL/SQL Callback for Session State Fix Up

24-5

CREATE OR REPLACE PACKAGE BODY mycb_pack AS
PROCEDURE mycallback (
desired_props IN VARCHAR2,
actual_props IN VARCHAR2
) IS
property VARCHAR2(64);
key VARCHAR2(64);
value VARCHAR2(64);
pos number;
pos2 number;
pos3 number;
idx1 number;

BEGIN
idx1:=1;

pos:=1;
pos2:=1;
pos3:=1;
property := 'tmp';
-- To check if desired properties are part of actual properties
while (pos > 0 and length(desired_props)>pos)
loop
pos := instr (desired_props, ';', 1, idx1);
if (pos=0)
then
property := substr (desired_props, pos2);
else
property := substr (desired_props, pos2, pos-pos2);
end if ;
pos2 := pos+1;
pos3 := instr (property, '=', 1, 1);
key := substr (property, 1, pos3-1);
value := substr (property, pos3+1);
if (key = 'CURRENCY') then
EXECUTE IMMEDIATE 'ALTER SESSION SET NLS_CURRENCY=''' || value || '''';
elsif (key = 'SCHEMA') then
EXECUTE IMMEDIATE 'ALTER SESSION SET CURRENT_SCHEMA=' || value;
end if;
idx1 := idx1+1;
end loop;

END; -- mycallback
END mycb_pack;
/

See Also:

Oracle Database JDBC Java API Reference

Chapter 24
PL/SQL Callback for Session State Fix Up

24-6

24.6 APIs for Using DRCP
If you want to take advantage of DRCP with higher granular control for your custom
connection pool implementations, then you must use the following APIs declared in the
oracle.jdbc.OracleConnection interfaces:

• attachServerConnection

• detachServerConnection

• isDRCPEnabled

• isDRCPMultitagEnabled

• getDRCPReturnTag

• needToPurgeStatementCache

• getDRCPState

See Also:

Oracle Database JDBC Java API Reference

Chapter 24
APIs for Using DRCP

24-7

25
JDBC Support for Database Sharding

This chapter describes JDBC support for Database Sharding in the following sections:

• Overview of Database Sharding for JDBC Users

• About Building the Sharding Key

• APIs for Database Sharding Support

• JDBC Sharding Example

25.1 Overview of Database Sharding for JDBC Users
Modern web applications face new scalability challenges with huge volumes of data. A
commonly accepted solution to this problem is sharding. Sharding is a data tier
architecture, where data is horizontally partitioned across independent databases.
Each database in such a configuration is called a shard. All shards together make up a
single logical database, which is referred to as a sharded database (SDB). Sharding is
a shared-nothing database architecture because shards do not share physical
resources such as CPU, memory, or storage devices.

Sharding uses Global Data Services (GDS), where GDS routes a client request to an
appropriate database based on parameters such as availability, load, network latency,
and replication lag. A GDS pool is a set of replicated databases that offer the same
global service. The databases in a GDS pool can be located in multiple data centers
across different regions. A sharded GDS pool contains all shards of a sharded
database and their replicas, and appears as a single sharded database to database
clients.

Starting from Oracle Database 12c Release 2 (12.2.0.1), Oracle JDBC supports
database sharding. The JDBC driver recognizes the specified sharding key and super
sharding key and connects to the relevant shard that contains the data. Once the
connection is established to a shard, then any database operations, such as DMLs,
SQL queries and so on, are supported and executed in the usual way. The following
section describes the sharding terminologies used in this guide:

See Also:

Oracle Database Administrator’s Guide

Sharding, Shard, and Sharded Database

Sharding is a data tier architecture where data is horizontally partitioned across
independent databases. Each database in such configuration is called a shard. All
shards together make up a single logical database which is referred to as a sharded
database (SDB).

25-1

Sharding Key, Composite Sharding Key, and Super Sharding Key

A sharding key is a partitioning key used in single-level sharding by range, list, or
consistent hash. All sharding keys together are referred to as the composite sharding
keys. A super-sharding key is the partitioning key used in composite sharding for the
top-level sharding by range or list. Both the sharding key and the super sharding key
can contain one or more columns that determine the shard where each row is stored.
A sharding key can be of type VARCHAR2, CHAR, DATE, NUMBER, TIMESTAMP
and so on.

For JDBC users, it is recommended that sharding keys and super sharding keys must
be passed while obtaining connections from the database. However, Sharding Keys
can be provided in the connection string as a separate attribute under CONNECT_DATA.
Passing sharding key in the connection string restricts the connections only to one
shard. So, it is not recommended to use this approach. Following code snippet shows
how you can provide Sharding Keys as a separate attribute under CONNECT_DATA in the
connection string:

(DESCRIPTION=(…)(CONNECT_DATA=(SERVICE_NAME=ORCL (SHARDING_KEY=…)
(SUPER_SHARDING_KEY=...)))

Note:

You must provide the sharding key compliant to the NLS formatting that is
specified in the database.

Multi Shard Queries

Multi Shard Queries enable routing and processing of queries and transactions that
access data stored on multiple shards. Multi Shard Queries are executed without a
sharding key. Multi Shard Operations are used for simple aggregation of data and
reporting across shards.

Shard Catalog

Shard Catalog is a special database that is used for storing sharded database and
supporting multi shard queries. It also helps in centralized management of a sharded
database.

Shard Director

A shard director is a specific implementation of a global service manager (GSM) that
acts as a regional listener for clients that connect to an SDB and maintains a current
topology map of the SDB. Based on the sharding key passed during a connection
request, it routes the connections to the appropriate shard.

Shard Topology

Shard Topology is the sharding key range mappings stored in a particular shard.
Universal Connection Pool (UCP) can cache shard topology, which enables it to
bypass shard director while establishing connections to shards. So, applications that
you built using UCP get fast path for shards.

Chapter 25
Overview of Database Sharding for JDBC Users

25-2

See Also:

Oracle Universal Connection Pool Developer’s Guide

Chunk

A chunk is a single partition from each table of a table family. It is a unit of data
migration between shards.

Chunk Split

Chunk Split is a process that is required when chunks become too big or only part of a
chunk needs to be migrated to another shard.

Chunk Migration

Chunk migration is the process of moving a chunk from one shard to another, when
data or workload skew occurs without any change in the number of shards. It is
initiated by DBA to eliminate hot spots.

Resharding

Resharding is the process of redistributing data between shards triggered by a change
in the number of shards. Chunks are moved between shards for even distribution of
chunks across shards. However, content of chunks does not change, that is, no
rehashing takes place during Resharding.

25.2 About Building the Sharding Key

The shard aware applications must identify and build the sharding key and the super
sharding key, which are required to establish a connection to the sharded database.
For achieving this, the shard aware applications must use the OracleShardingKey and
the OracleShardingKeyBuilder interfaces.

The OracleShardingKeyBuilder uses the following builder method for supporting
compound keys with different data types:

subkey(Object subkey, java.sql.SQLTYPE subkeyDataType)

There are multiple invocations of the subkey method on the builder for building a
compound sharding key, where each subkey can be of different data types. The data
type can be defined using the oracle.jdbc.OracleType enum or java.sql.JDBCType.

Example 25-1 Building a Sharding Key

The following example shows how to build a sharding key:

import java.sql.Connection;
import java.sql.Date;
import java.sql.SQLException;
import java.sql.Statement;

import oracle.jdbc.OracleShardingKey;

Chapter 25
About Building the Sharding Key

25-3

import oracle.jdbc.OracleType;
import oracle.ucp.jdbc.PoolDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;

 public class ShardExample
 {
 public static void main(String[] args) throws SQLException
 {
 String url = "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=myhost)
(PORT=3216)(PROTOCOL=tcp))(CONNECT_DATA=(SERVICE_NAME=myservice)
(REGION=east)))";
 String user="testuser1";
 String pwd = "password";

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setURL(url);
 pds.setUser(user);
 pds.setPassword(pwd);

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setInitialPoolSize(5);
 pds.setMinPoolSize(5);
 pds.setMaxPoolSize(20);

 // build the sharding key object
 Date shardingKeyVal = new java.sql.Date(0L);
 OracleShardingKey sdkey = pds.createShardingKeyBuilder()
 .subkey(shardingKeyVal, OracleType.DATE)
 .build();

 Connection conn = pds.createConnectionBuilder()
 .shardingKey(sdkey)
 .build();

 Statement stmt = conn.createStatement();
 stmt.execute("... SQL statement here ...");
 stmt.close();
 conn.close();
 }
 }

The following code snippet shows how to build a compound sharding key that consists
of String and Date data types:

...
Date shardingKeyVal = new java.sql.Date(0L);
...
OracleShardingKey shardingKey = datasource.createShardingKeyBuilder()
 .subkey("abc@xyz.com", JDBCType.VARCHAR)
 .subkey(shardingKeyVal, OracleType.DATE)
 .build();
...

Chapter 25
About Building the Sharding Key

25-4

Note:

• There is a fixed set of data types that are valid and supported. If any
unsupported data types are used as keys, then exceptions are thrown.
The following list specifies the supported data types:

– OracleType.VARCHAR2/JDBCType.VARCHAR

– OracleType.CHAR/JDBCType.CHAR

– OracleType.NVARCHAR/JDBCType.NVARCHAR

– OracleType.NCHAR/JDBCType.NCHAR

– OracleType.NUMBER/JDBCType.NUMERIC

– OracleType.FLOAT/ JDBCType.FLOAT

– OracleType.DATE/ JDBCType.DATE

– OracleType.TIMESTAMP/JDBCType.TIMESTAMP

– OracleType.TIMESTAMP_WITH_LOCAL_TIME_ZONE

– OracleType.RAW

• You must provide a sharding key that is compliant to the NLS formatting
specified in the database.

25.3 APIs for Database Sharding Support
Oracle Database 12c Release 2 (12.2.0.1) introduced a set of APIs for implementing
database sharding. The following sections discuss these APIs in details:

• The OracleShardingKey Interface

• The OracleShardingKeyBuilder Interface

• The OracleConnectionBuilder Interface

• Other New Classes and Methods for Database Sharding Support

25.3.1 The OracleShardingKey Interface

This interface indicates that the current object represents an Oracle sharding key that
is to be used with Oracle sharded database.

Syntax

public interface OracleShardingKey extends Comparable <OracleShardingKey>

Chapter 25
APIs for Database Sharding Support

25-5

25.3.2 The OracleShardingKeyBuilder Interface

OracleShardingKeyBuilder provides the interface to build the compound sharding key
with subkeys of various supported data types. This interface uses the new JDK 8
builder pattern for building a sharding key.

Syntax

public interface OracleShardingKeyBuilder

Example 25-2 Creating the Sharding Key

OracleDataSource ods = new OracleDataSource();
...
//set datasource properties..
...
OracleShardingKey shardingKey = ods.createShardingKeyBuilder()
 .subkey("Customer_Name_XYZ",
JDBCType.VARCHAR)
 .subkey(94002, JDBCType.NUMERIC)
 .build();

25.3.3 The OracleConnectionBuilder Interface

The OracleConnectionBuilder is used for building connection objects with additional
parameters, other than user name and password. For creating a connection, the
builder methods need to be called for each parameter that needs to be part of the
connection request, followed by a build() method. The order in which the builder
methods are called is not important. However, if the same builder attribute is applied
more than once, then only the most recent value is considered while building the
connection. The build() method of the builder can be called only once on a builder
object.

Syntax

public interface OracleConnectionBuilder

Example 25-3 Creating the Connection Builder

...
OracleDataSource ods=new OracleDataSource();
...
OracleConnection conn = ods.createConnectionBuilder()
 .shardingKey(shardingKey)
 .superShardingKey(superShardingKey)
 .build();

Chapter 25
APIs for Database Sharding Support

25-6

25.3.4 Other New Classes and Methods for Database Sharding
Support

This section describes the rest of the new classes and methods introduced for
implementing database sharding support.

New Methods in OracleDataSource Class

The createConnectionBuilder and createShardingKeyBulider methods have been
introduced in OracleDataSource class for database sharding support.

OracleConnectionBuilder createConnectionBuilder() throws SQLException;
OracleShardingKeyBuilder createShardingKeyBuilder()

New Methods in OracleXADataSource Class

The createConnectionBuilder method has been introduced in OracleXADataSource
class for database sharding support.

OracleConnectionBuilder createConnectionBuilder() throws SQLException;

New Methods in OracleConnection Class

The setShardingKeyIfValid and setShardingKey methods have been introduced in
OracleConnection class for database sharding support.

boolean setShardingKeyIfValid(OracleShardingKey shardingKey,
OracleShardingKey superShardingKey, int timeout) throws SQLException;

void setShardingKey(OracleShardingKey shardingKey, OracleShardingKey
superShardingKey) throws SQLException;

New Methods in OracleXAConnection Class

The setShardingKeyIfValid and setShardingKey methods have been introduced in
OracleConnection class for database sharding support.

boolean setShardingKeyIfValid(OracleShardingKey shardingKey,
OracleShardingKey superShardingKey, int timeout) throws SQLException;

void setShardingKey(OracleShardingKey shardingKey, OracleShardingKey
superShardingKey) throws SQLException;

25.4 JDBC Sharding Example
The following code snippet shows how to use JDBC sharding APIs:

Chapter 25
JDBC Sharding Example

25-7

Example 25-4 JDBC Sharding Example

 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=myhost)
(PORT=1521)(PROTOCOL=tcp))
(CONNECT_DATA=(SERVICE_NAME=myorcldbservicename)))");
 ods.setUser("hr");
 ods.setPassword("hr");

 // Employee name is the sharding Key in this example.
 // Build the Sharding Key using employee name as shown below.

 OracleShardingKey employeeNameShardKey =
ods.createShardingKeyBuilder()
 .subkey("Mary",
JDBCType.VARCHAR)// First Name
 .subkey("Claire",
JDBCType.VARCHAR)// Last Name
 .build();

 OracleShardingKey locationSuperShardKey =
ods.createShardingKeyBuilder() // Building a super sharding key using
location as the key
 .subkey("US",
JDBCType.VARCHAR)
 .build();

 OracleConnection connection = ods.createConnectionBuilder()
 .shardingKey(employeeNameShardKey)
 .superShardingKey(locationSuperShard
Key)
 .build();

Chapter 25
JDBC Sharding Example

25-8

26
Oracle Advanced Queuing

Oracle Advanced Queuing (AQ) provides database-integrated message queuing
functionality. It is built on top of Oracle Streams and optimizes the functions of Oracle
Database so that messages can be stored persistently, propagated between queues
on different computers and databases, and transmitted using Oracle Net Services,
HTTP, and HTTPS. Because Oracle AQ is implemented in database tables, all
operational benefits of high availability, scalability, and reliability are also applicable to
queue data. This chapter provides information about the Java interface to Oracle AQ.

Note:

• Oracle Advanced Queuing (AQ) is a feature of the Oracle JDBC Thin
driver and is not supported by JDBC OCI driver.

• In Oracle Database 12c Release 1 (12.1), support for XMLType queues
has been added. Till Oracle Database 11g Release 1, supported queue
types were RAW, ADT, and ANYDATA queue types.

See Also:

Oracle Database Advanced Queuing User's Guide

This chapters covers the following topics:

• Functionality and Framework of Oracle Advanced Queuing

• Making Changes to the Database

• AQ Asynchronous Event Notification

• About Creating Messages

• Enqueuing Messages

• Dequeuing Messages

• Examples: Enqueuing and Dequeuing

26.1 Functionality and Framework of Oracle Advanced
Queuing

The Oracle JDBC package oracle.jdbc.aq provides a fast Java interface to AQ. This
package contains the following:

• Classes

26-1

– AQDequeueOptions

Specifies the options available for the dequeue operation

– AQEnqueueOptions

Specifies the options available for the enqueue operation

– AQFactory

Is a factory class for AQ

– AQNotificationEvent

Is created whenever a new message is enqueued in a queue for which you
have registered your interest

• Interfaces

– AQAgent

Used to represent and identify a user of the queue or a producer or consumer
of the message

– AQMessage

Represents a message that is enqueued or dequeued

– AQMessageProperties

Contains message properties such as Correlation, Sender, Delay and
Expiration, Recipients, and Priority and Ordering

– AQNotificationListener

Is a listener interface for receiving AQ notification events

– AQNotificationRegistration

Represents your interest in being notified when a new message is enqueued
in a particular queue

These classes and interfaces enable you to access an existing queue, create
messages, and enqueue and dequeue messages.

Note:

Oracle JDBC drivers do not provide any API to create a queue. Queues must
be created through the DBMS_AQADM PL/SQL package.

See Also:

For more information about the APIs, refer to Oracle Database JDBC Java
API Reference.

Chapter 26
Functionality and Framework of Oracle Advanced Queuing

26-2

26.2 Making Changes to the Database
The code snippets used in this chapter assume that user HR is connecting to the
database. Therefore, in the database, you must grant the following privileges to HR:

GRANT EXECUTE ON DBMS_AQ to HR;
GRANT EXECUTE ON DBMS_AQADM to HR;
GRANT AQ_ADMINISTRATOR_ROLE TO HR;
GRANT ADMINISTER DATABASE TRIGGER TO HR;

Before you start enqueuing and dequeuing messages, you must have queues in the
Database. For this, you must perform the following:

1. Create a queue table in the following way:

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 QUEUE_TABLE =>'HR.RAW_SINGLE_QUEUE_TABLE',
 QUEUE_PAYLOAD_TYPE =>'RAW',
 COMPATIBLE => '10.0');
END;

2. Create a queue in the following way:

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 QUEUE_NAME =>'HR.RAW_SINGLE_QUEUE',
 QUEUE_TABLE =>'HR.RAW_SINGLE_QUEUE_TABLE',
END;

3. Start the queue in the following way:

BEGIN
 DBMS_AQADM.START_QUEUE(
 'HR.RAW_SINGLE_QUEUE',
END;

It is a good practice to stop the queue and remove the queue tables from the
database. You can perform this in the following way:

1. Stop the queue in the following way:

BEGIN
 DBMS_AQADM.STOP_QUEUE(
 HR.RAW_SINGLE_QUEUE',
END;

2. Remove the queue tables from the database in the following way:

BEGIN
 DBMS_AQADM.DROP_QUEUE_TABLE(
 QUEUE_TABLE =>'HR.RAW_SINGLE_QUEUE_TABLE',
 FORCE => TRUE
END;

26.3 AQ Asynchronous Event Notification
A JDBC application can do the following:

• Register to the AQ namespace and receive notification when an enqueue occurs.
This can be performed in the following way:

Chapter 26
Making Changes to the Database

26-3

 public AQNotificationRegistration registerForAQEvents(
 OracleConnection conn,
 String queueName) throws SQLException
 {
 Properties globalOptions = new Properties();
 String[] queueNameArr = new String[1];
 queueNameArr[0] = queueName;
 Properties[] opt = new Properties[1];
 opt[0] = new Properties();
 opt[0].setProperty(OracleConnection.NTF_AQ_PAYLOAD,"true");
 AQNotificationRegistration[] regArr =
conn.registerAQNotification(queueNameArr,opt,globalOptions);
 AQNotificationRegistration reg = regArr[0];
 return reg;
 }

• Register subscriptions to database events and receive notifications when the
events are triggered

Registered clients are notified asynchronously when events are triggered or on an
explicit AQ enqueue (or a new message is enqueued in a queue for which you
have registered your interest). Clients do not need to be connected to a database.

The following code snippet shows how to subscribe to database events and
receive notifications when the events are triggered:

class DemoAQRawQueueListener implements AQNotificationListener
{
 OracleConnection conn;
 String queueName;
 String typeName;
 int eventsCount = 0;

 public DemoAQRawQueueListener(String _queueName, String _typeName)
 throws SQLException
 {
 queueName = _queueName;
 typeName = _typeName;
 conn = (OracleConnection)DriverManager.getConnection
 (DemoAQRawQueue.URL, DemoAQRawQueue.USERNAME, DemoAQRawQueue.PASSWORD);
 }

 public void onAQNotification(AQNotificationEvent e)
 {
 try
 {
 AQDequeueOptions deqopt = new AQDequeueOptions();
 deqopt.setRetrieveMessageId(true);
 if(e.getConsumerName() != null)
 deqopt.setConsumerName(e.getConsumerName());
 if((e.getMessageProperties()).getDeliveryMode()
 == AQMessageProperties.DeliveryMode.BUFFERED)
 {
 deqopt.setDeliveryMode(AQDequeueOptions.DEQUEUE_BUFFERED);
 deqopt.setVisibility(AQDequeueOptions.DEQUEUE_IMMEDIATE);
 }
 AQMessage msg = conn.dequeue(queueName,deqopt,typeName);
 byte[] msgId = msg.getMessageId();
 if(msgId != null)
 {
 String mesgIdStr = DemoAQRawQueue.byteBufferToHexString(msgId,20);
 System.out.println("ID of message dequeued = "+mesgIdStr);

Chapter 26
AQ Asynchronous Event Notification

26-4

 }
 System.out.println(msg.getMessageProperties().toString());
 byte[] payload = msg.getPayload();
 if(typeName.equals("RAW"))
 {
 String payloadStr = new String(payload,0,10);
 System.out.println("payload.length="+payload.length+",
value="+payloadStr);
 }
 }
 catch(SQLException sqlex)
 {
 System.out.println(sqlex.getMessage());
 }
 eventsCount++;
 }
 public int getEventsCount()
 {
 return eventsCount;
 }
 public void closeConnection() throws SQLException
 {
 conn.close();
 }
}

• Register to the listener in the following way:

AQNotificationRegistration reg = registerForAQEvents(conn,queueName+":BLUE");
DemoAQRawQueueListener demo_li = new DemoAQRawQueueListener(queueName,queueType);
reg.addListener(demo_li);

26.4 About Creating Messages
This section describes the following concepts:

• Creating Messages

• AQ Message Properties

• AQ Message Payload

26.4.1 Creating Messages
Before you enqueue a message, you must create the message. An instance of a class
implementing the AQMessage interface represents an AQ message. An AQ message
contains properties (metadata) and a payload (data). Perform the following to create
an AQ message:

1. Create an instance of AQMessageProperties in the following way:

AQMessageProperties msgprop = AQFactory.createAQMessageProperties();

2. Set the property attributes in the following way:

msgprop.setCorrelation("mycorrelation");
msgprop.setExceptionQueue("MY_EXCEPTION_QUEUE");
msgprop.setExpiration(0);
msgprop.setPriority(1);

Chapter 26
About Creating Messages

26-5

3. Create the AQ message using the AQMessageProperties object in the following
way:

AQMessage mesg = AQFactory.createAQMessage(msgprop);

4. Set the payload in the following way:

byte[] rawPayload = "Example_Payload".getBytes();
mesg.setPayload(new oracle.sql.RAW(rawPayload));

26.4.2 AQ Message Properties
The properties of the AQ message are represented by an instance of the
AQMessageProperties interface. You can set or get the following message properties:

• Dequeue Attempts Count: Specifies the number of attempts that have been made
to dequeue the message. This property cannot be set.

• Correlation: Is an identifier supplied by the producer of the message at the time of
enqueuing the message.

• Delay: Is the number of seconds for which the message is in the WAITING state.
After the specified delay, the message is in the READY state and available for
dequeuing. Dequeuing a message by using the message ID (msgid) overrides the
delay specification.

Note:

Delay is not supported with buffered messaging.

• Delivery Mode: Specifies whether the message is a buffered message or a
persistent message. This property cannot be set.

• Enqueue Time: Specifies the time at which the message was enqueued. This
value is determined by the system and cannot be set by the user.

• Exception Queue: Specifies the name of the queue into which the message is
moved if it cannot be processed successfully. Messages are moved in two cases:

– The number of unsuccessful dequeue attempts has exceeded max_retries.

– The message has expired.

• Expiration: Is the number of seconds during which the message is available for
dequeuing, starting from when the message reaches the READY state. If the
message is not dequeued before it expires, then it is moved to the exception
queue in the EXPIRED state.

• Message State: Specifies the state of the message at the time of dequeuing the
message. This property cannot be set.

• Previous Queue Message ID: Is the ID of the message in the last queue that
generated the current message. When a message is propagated from one queue
to another, this attribute identifies the ID of the queue from which it was last
propagated. This property cannot be set.

• Priority: Specifies the priority of the message. It can be any integer including
negative integers; the smaller the value, the higher the priority.

Chapter 26
About Creating Messages

26-6

• Recipient list: Is a list of AQAgent objects that represent the recipients. The default
recipients are the queue subscribers. This parameter is valid only for multiple-
consumer queues.

• Sender: Is an identifier specified by the producer at the time of enqueuing the
message. It is an instance of AQAgent.

• Transaction group: Specifies the transaction group of the message for transaction-
grouped queues. It is set after a successful call to the dequeueArray method.

26.4.3 AQ Message Payload
Depending on the type of the queue, the payload of the AQ message can be specified
using the setPayload method of the AQMessage interface. The following code snippet
illustrates how to set the payload:

...
byte[] rawPayload = "Example_Payload".getBytes();
mesg.setPayload(new oracle.sql.RAW(rawPayload));
...

You can retrieve the payload of an AQ message using the getPayload method or the
appropriate getXXXPayload method in the following way:

byte[] payload = mesg.getPayload();

These methods are defined in the AQMessage interface.

26.5 Example: Creating a Message and Setting a Payload
This section provides an example that illustrates how to create a message and set a
payload.

Example 26-1 Creating a Message and Setting a Payload

This example shows how to Create an instance of AQMessageProperties, set the
property attributes, create the AQ message, and set the payload.

 AQMessageProperties msgprop = AQFactory.createAQMessageProperties();
 msgprop.setCorrelation("mycorrelation");
 msgprop.setExceptionQueue("MY_EXCEPTION_QUEUE");
 AQAgent ag = AQFactory.createAQAgent();
 ag.setName("MY_SENDER_AGENT_NAME");
 ag.setAddress("MY_SENDER_AGENT_ADDRESS");
 msgprop.setSender(ag);
 // handle multi consumer case:
 if(recipients != null)
 msgprop.setRecipientList(recipients);
 System.out.println(msgprop.toString());
 AQMessage mesg = AQFactory.createAQMessage(msgprop);
byte[] rawPayload = "Example_Payload".getBytes();
mesg.setPayload(new oracle.sql.RAW(rawPayload));

26.6 Enqueuing Messages
After you create a message and set the message properties and payload, you can
enqueue the message using the enqueue method of the OracleConnection interface.

Chapter 26
Example: Creating a Message and Setting a Payload

26-7

Before you enqueue the message, you can specify some enqueue options. The
AQEnqueueOptions class enables you to specify the following enqueue options:

• Delivery mode: Specifies the delivery mode. Delivery mode can be set to either
persistent (ENQUEUE_PERSISTENT) or buffered (ENQUEUE_BUFFERED).

• Retrieve Message ID: Specifies whether or not the message ID has to be retrieved
from the server when the message has been enqueued. By default, the message
ID is not retrieved.

• Transformation: Specifies a transformation that will be applied before enqueuing
the message. The return type of the transformation function must match the type
of the queue.

Note:

Transformations must be created in PL/SQL using
DBMS_TRANSFORM.CREATE_TRANSFORMATION(...).

• Visibility: Specifies the transactional behavior of the enqueue request. The default
value for this option is ENQUEUE_ON_COMMIT. It indicates that the enqueue operation
is part of the current transaction. ENQUEUE_IMMEDIATE indicates that the enqueue
operation is an autonomous transaction, which commits at the end of the
operation. For buffered messaging, you must use ENQUEUE_IMMEDIATE.

The following code snippet illustrates how to set the enqueue options and enqueue the
message:

...
AQEnqueueOptions opt = new AQEnqueueOptions();opt.setRetrieveMessageId(true);
conn.enqueue(queueName, opt, mesg);
...

26.7 Dequeuing Messages
Enqueued messages can be dequeued using the dequeue method of the
OracleConnection interface. Before you dequeue a message you must set the
dequeue options. The AQDequeueOptions class enables you to specify the following
dequeue options:

• Condition: Specifies a conditional expression based on the message properties,
the message data properties, and PL/SQL functions. A dequeue condition is
specified as a Boolean expression using syntax similar to the WHERE clause of a
SQL query.

• Consumer name: If specified, only the messages matching the consumer name
are accessed.

Note:

If the queue is a single-consumer queue, do not set this option.

• Correlation: Specifies a correlation criterion (or search criterion) for the dequeue
operation.

Chapter 26
Dequeuing Messages

26-8

• Delivery Filter: Specifies the type of message to be dequeued. You dequeue
buffered messages only (DEQUEUE_BUFFERED) or persistent messages only
(DEQUEUE_PERSISTENT), which is the default, or both
(DEQUEUE_PERSISTENT_OR_BUFFERED).

• Dequeue Message ID: Specifies the message identifier of the message to be
dequeued. This can be used to dequeue a unique message whose ID is known.

• Dequeue mode: Specifies the locking behavior associated with the dequeue
operation. It can take one of the following values:

– DequeueMode.BROWSE: Message is dequeued without acquiring any lock.

– DequeueMode.LOCKED: Message is dequeued with a write lock that lasts for the
duration of the transaction.

– DequeueMode.REMOVE: (default) Message is dequeued and deleted. The
message can be retained in the queue based on the retention properties.

– DequeueMode.REMOVE_NO_DATA: Message is marked as updated or deleted.

• Maximum Buffer Length: Specifies the maximum number of bytes that will be
allocated when dequeuing a message from a RAW queue. The default maximum is
DEFAULT_MAX_PAYLOAD_LENGTH but it can be changed to any other nonzero value. If
the buffer is not large enough to contain the entire message, then the exceeding
bytes will be silently ignored.

• Navigation: Specifies the position of the message that will be retrieved. It can take
one of the following values:

– NavigationOption.FIRST_MESSAGE: The first available message matching the
search criteria is dequeued.

– NavigationOption.NEXT_MESSAGE: (default) The next available message
matching the search criteria is dequeued. If the previous message belongs to
a message group, then the next available message matching the search
criteria in the message group is dequeued.

– NavigationOption.NEXT_TRANSACTION: Messages in the current transaction
group are skipped, and the first message of the next transaction group is
dequeued. This setting can be used only if message grouping is enabled for
the queue.

• Retrieve Message ID: Specifies whether or not the message identifier of the
dequeued message needs to be retrieved. By default, it is not retrieved.

• Transformation: Specifies a transformation that will be applied after dequeuing the
message. The source type of the transformation must match the type of the
queue.

Note:

Transformations must be created in PL/SQL using
DBMS_TRANSFORM.CREATE_TRANSFORMATION(...).

• Visibility: Specifies whether or not the message is dequeued as part of the current
transaction. It can take one of the following values:

– VisibilityOption.ON_COMMIT: (default) The dequeue operation is part of the
current transaction.

Chapter 26
Dequeuing Messages

26-9

– VisibilityOption.IMMEDIATE: The dequeue operation is an autonomous
transaction that commits at the end of the operation.

Note:

The Visibility option is ignored in the DequeueMode.BROWSE dequeue
mode. If the delivery filter is DEQUEUE_BUFFERED or
DEQUEUE_PERSISTENT_OR_BUFFERED, then this option must be set to
VisibilityOption.IMMEDIATE.

• Wait: Specifies the wait time for the dequeue operation, if none of the messages
matches the search criteria. The default value is DEQUEUE_WAIT_FOREVER indicating
that the operation waits forever. If set to DEQUEUE_NO_WAIT, then the operation
does not wait. If a number is specified, then the dequeue operation waits for the
specified number of seconds.

Note:

If you use DEQUEUE_WAIT_FOREVER, then the dequeue operation will not
return until a message that matches the search criterion is available in
the queue. However, you can interrupt the dequeue operation by calling
the cancel method on the OracleConnection object.

The following code snippet illustrates how to set the dequeue options and dequeue the
message:

...
AQDequeueOptions deqopt = new AQDequeueOptions();
deqopt.setRetrieveMessageId(true);
deqopt.setConsumerName(consumerName);
AQMessage msg = conn.dequeue(queueName,deqopt,queueType);

26.8 Examples: Enqueuing and Dequeuing
This section provides a few examples that illustrate how to enqueue and dequeue
messages.

Example 26-2 illustrates how to enqueue a message, and Example 26-3 illustrates
how to dequeue a message.

Example 26-2 Enqueuing a Single Message

This example illustrates how to obtain access to a queue, create a message, and
enqueue it.

AQMessageProperties msgprop = AQFactory.createAQMessageProperties();
msgprop.setPriority(1);
msgprop.setExceptionQueue("EXCEPTION_QUEUE");
msgprop.setExpiration(0);
AQAgent agent = AQFactory.createAQAgent();
agent.setName("AGENTNAME");
agent.setAddress("AGENTADDRESS");
msgprop.setSender(agent);

Chapter 26
Examples: Enqueuing and Dequeuing

26-10

AQMessage mesg = AQFactory.createAQMessage(msgprop);
mesg.setPayload(buffer); // where buffer is a byte array (for a RAW queue)
AQEnqueueOptions options = new AQEnqueueOptions();
conn.enqueue("HR.MY_QUEUE", options, mesg);

Example 26-3 Dequeuing a Single Message

This example illustrates how to obtain access to a queue, set the dequeue options,
and dequeue the message.

AQDequeueOptions options = new AQDequeueOptions();
options.setDeliveryFilter(AQDequeueOptions.DeliveryFilter.BUFFERED);
AQMessage mesg = conn.dequeue("HR.MY_QUEUE", options, "RAW");

Chapter 26
Examples: Enqueuing and Dequeuing

26-11

27
Continuous Query Notification

This section describes the following topics:

• Overview of Continuos Query Notification

• Creating a Registration

• Associating a Query with a Registration

• Notifying Database Change Events

• Deleting a Registration

27.1 Overview of Continuous Query Notification
Generally, a middle-tier data cache duplicates some data from the back-end database
server. Its goal is to avoid redundant queries to the database. However, this is efficient
only when the data rarely changes in the database. The data cache has to be updated
or invalidated when the data changes in the database. Starting from 11g Release 1,
Oracle JDBC drivers provide support for the Continuous Query Notification feature of
Oracle Database. Using this functionality, multitier systems can take advantage of the
Continuous Query Notification feature to maintain a data cache as up-to-date as
possible, by receiving invalidation events from the JDBC drivers.

The JDBC drivers can register SQL queries with the database and receive notifications
in response to the following:

• DML or DDL changes on the objects associated with the queries

• DML or DDL changes that affect the result set

The notifications are published when the DML or DDL transaction commits (changes
made in a local transaction do not generate any event until they are committed).

To use Oracle JDBC driver support for Continuous Query Notification, perform the
following:

1. Registration: You first need to create a registration.

2. Query association: After you have created a registration, you can associate SQL
queries with it. These queries are part of the registration.

3. Notification: Notifications are created in response to changes in tables or result
set. Oracle database communicates these notifications to the JDBC drivers
through a dedicated network connection and JDBC drivers convert these
notifications to Java events.

Also, you need to grant the CHANGE NOTIFICATION privilege to the user. For example, if
you connect to the database using the HR user name, then you need to run the
following command in the database:

grant change notification to HR;

27-1

27.2 Creating a Registration
Creating a registration is a one-time process and is done outside the currently used
transaction. The API for creating a registration in the server is executed in its own
transaction and is committed immediately. You need a JDBC connection to create a
registration, however, the registration is not attached to the connection. You can close
the connection after creating a registration, and the registration survives. In an Oracle
RAC environment, a registration is a persistent entity that exists on all nodes. The
registration exists in the Database. So, even if a node goes down, the registration
continues to exist and is notified when the tables change.

There are two ways to create a registration:

• The JDBC-style of registration: Use the JDBC driver to create a registration on the
server. The JDBC driver launches a new thread that listens to notifications from
the server (through a dedicated channel) and converts these notification
messages into Java events. The driver then notifies all the listeners registered with
this registration.

• The PL/SQL-style of registration: If you want a PL/SQL stored procedure to handle
the notifications, then create a PL/SQL-style registration. As in the JDBC-style of
registration, the JDBC drivers enable you to attach statements (queries) to this
registration. However the JDBC drivers do not get notifications from the server
because the notifications are handled by the PL/SQL stored procedure.

Note:

This approach is useful only for nonmultithreaded languages, such as PHP.

There is no way to remove one particular object (table) from an existing registration. A
workaround would be to either create a new registration without this object or ignore
the events that are related to this object.

You can use the registerDatabaseChangeNotification method of the
oracle.jdbc.OracleConnection interface to create a JDBC-style of registration. You
can set certain registration options through the options parameter of this method. The
"Continuous Query Notification Registration Options" table in the following section lists
some of the registration options that can be set. To set these options, use the
java.util.Properties object. These options are defined in the
oracle.jdbc.OracleConnection interface. The registration options have a direct
impact on the notification events that the JDBC drivers will create. The example (at the
end of this chapter) illustrates how to use the Continuous Query Notification feature.

The registerDatabaseChangeNotification method creates a new database change
registration in the database server with the given options. It returns a
DatabaseChangeRegistration object, which can then be used to associate a
statement with this registration. It also opens a listener socket that will be used by the
database to send notifications.

Chapter 27
Creating a Registration

27-2

Note:

If a listener socket (created by a different registration) exists, then this socket
will be used by the new database change registration as well.

27.2.1 Continuous Query Notification Registration Options
The following table lists the Continuous Query Notification Registration Options:

Table 27-1 Continuous Query Notification Registration Options

Option Description

DCN_IGNORE_DELETEOP If set to true, DELETE operations will not generate any database change
event.

DCN_IGNORE_INSERTOP If set to true, INSERT operations will not generate any database change
event.

DCN_IGNORE_UPDATEOP If set to true, UPDATE operations will not generate any database change
event.

DCN_NOTIFY_CHANGELAG Specifies the number of transactions by which the client is willing to lag
behind.

Note: If this option is set to any value other than 0, then ROWID level
granularity of information will not be available in the events, even if the
DCN_NOTIFY_ROWIDS option is set to true.

DCN_NOTIFY_ROWIDS Database change events will include row-level details, such as operation
type and ROWID.

DCN_QUERY_CHANGE_NOTIFICATION Activates query change notification instead of object change notification.

Note: This option is available only when running against an 11.0
database.

NTF_LOCAL_HOST Specifies the IP address of the computer that will receive the notifications
from the server.

NTF_LOCAL_TCP_PORT Specifies the TCP port that the driver should use for the listener socket.

NTF_QOS_PURGE_ON_NTFN Specifies if the registration should be expunged on the first notification
event.

NTF_QOS_RELIABLE Specifies whether or not to make the notifications persistent, which
comes at a performance cost.

NTF_TIMEOUT Specifies the time in seconds after which the registration will be
automatically expunged by the database.

If there exists a registration, then you can also use the
getDatabaseChangeRegistration method to map the existing registration with a new
DatabaseChangeRegistration object. This method is particularly useful if you have
created a registration using PL/SQL and want to associate a statement with it.

27.3 Associating a Query with a Registration
After you have created a registration or mapped to an existing registration, you can
associate a query with it. Like creating a registration, associating a query with a

Chapter 27
Associating a Query with a Registration

27-3

registration is a one-time process and is done outside of the currently used
registration. The query will be associated even if the local transaction is rolled back.

You can associate a query with registration using the
setDatabaseChangeRegistration method defined in the OracleStatement class. This
method takes a DatabaseChangeRegistration object as parameter. The following
code snippet illustrates how to associate a query with a registration:

...
// conn is an OracleConnection object.
// prop is a Properties object containing the registration options.
DatabaseChangeRegistration dcr = conn.registerDatabaseChangeNotifictaion(prop);
...
Statement stmt = conn.createStatement();
// associating the query with the registration
((OracleStatement)stmt).setDatabaseChangeRegistration(dcr);
// any query that will be executed with the 'stmt' object will be associated with
// the registration 'dcr' until 'stmt' is closed or
// '((OracleStatement)stmt).setDatabaseChangeRegistration(null);' is executed.
...

27.4 Notifying Database Change Events
To receive Continuous Query Notifications, attach a listener to the registration. When a
database change event occurs, the database server notifies the JDBC driver. The
driver then constructs a new Java event, identifies the registration to be notified, and
notifies the listeners attached to the registration. The event contains the object ID of
the database object that has changed and the type of operation that caused the
change. Depending on the registration options, the event may also contain row-level
detail information. The listener code can then use the event to make decisions about
the data cache.

Note:

The listener code must not slow down the JDBC notification mechanism. If
the code is time-consuming, for example, if it refreshes the data cache by
querying the database, then it needs to be executed within its own thread.

You can attach a listener to a registration using the addListener method. The
following code snippet illustrates how to attach a listener to a registration:

...
// conn is an OracleConnection object.
// prop is a Properties object containing the registration options.
DatabaseChangeRegistration dcr = conn.registerDatabaseChangeNotifictaion(prop);
...
// Attach the listener to the registration.
// Note: DCNListener is a custom listener and not a predefined or standard
// lsiener
DCNListener list = new DCNListener();
dcr.addListener(list);
...

Chapter 27
Notifying Database Change Events

27-4

27.5 Deleting a Registration
You need to explicitly unregister a registration to delete it from the server and release
the resources in the driver. You can unregister a registration using a connection
different from one that was used for creating it. To unregister a registration, you can
use the unregisterDatabaseChangeNotification method defined in
oracle.jdbc.OracleConnection.

You must pass the DatabaseChangeRegistration object as a parameter to this
method. This method deletes the registration from the server and the driver and closes
the listener socket.

If the registration was created outside of JDBC, say using PL/SQL, then you must
pass the registration ID instead of the DatabaseChangeRegistration object. The
method will delete the registration from the server, however, it does not free any
resources in the driver.

Example 27-1 illustrates how to use the Continuous Query Notification feature. In this
example, the HR user is connecting to the database. Therefore in the database you
need to grant the following privilege to the user:

grant change notification to HR;

This code will also work with Oracle Database 10g Release 2 (10.2). This code uses
table registration. That is, when you register a SELECT query, what you register is the
name of the tables involved and not the query itself. In other words, you might select
one single row of a table and if another row is updated, you will be notified although
the result of your query has not changed.

In this example, if you leave the registration open instead of closing it, then the
Continuous Query Notification thread continues to run. Now if you run a DML query
that changes the HR.DEPARTMENTS table and commit it, say from SQL*Plus, then the
Java program prints the notification.

Example 27-1 Continuous Query Notification

import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleDriver;
import oracle.jdbc.OracleStatement;
import oracle.jdbc.dcn.DatabaseChangeEvent;
import oracle.jdbc.dcn.DatabaseChangeListener;
import oracle.jdbc.dcn.DatabaseChangeRegistration;

public class DBChangeNotification
{
 static final String USERNAME= "HR";
 static final String PASSWORD= "hr";
 static String URL;

 public static void main(String[] argv)
 {
 if(argv.length < 1)
 {
 System.out.println("Error: You need to provide the URL in the first

Chapter 27
Deleting a Registration

27-5

argument.");
 System.out.println(" For example: > java -classpath .:ojdbc6.jar
DBChangeNotification \"jdbc:oracle:thin:
@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=yourhost.yourdomain.com)(PORT=5221))
(CONNECT_DATA=
(SERVICE_NAME=orcl)))\"");

 System.exit(1);
 }
 URL = argv[0];
 DBChangeNotification demo = new DBChangeNotification();
 try
 {
 demo.run();
 }
 catch(SQLException mainSQLException)
 {
 mainSQLException.printStackTrace();
 }
 }

 void run() throws SQLException
 {
 OracleConnection conn = connect();

 // first step: create a registration on the server:
 Properties prop = new Properties();

 // if connected through the VPN, you need to provide the TCP address of the
client.
 // For example:
 // prop.setProperty(OracleConnection.NTF_LOCAL_HOST,"14.14.13.12");

 // Ask the server to send the ROWIDs as part of the DCN events (small performance
 // cost):
 prop.setProperty(OracleConnection.DCN_NOTIFY_ROWIDS,"true");
//
//Set the DCN_QUERY_CHANGE_NOTIFICATION option for query registration with finer
granularity.
 prop.setProperty(OracleConnection.DCN_QUERY_CHANGE_NOTIFICATION,"true");

 // The following operation does a roundtrip to the database to create a new
 // registration for DCN. It sends the client address (ip address and port) that
 // the server will use to connect to the client and send the notification
 // when necessary. Note that for now the registration is empty (we haven't
registered
 // any table). This also opens a new thread in the drivers. This thread will be
 // dedicated to DCN (accept connection to the server and dispatch the events to
 // the listeners).
 DatabaseChangeRegistration dcr = conn.registerDatabaseChangeNotification(prop);

 try
 {
 // add the listenerr:
 DCNDemoListener list = new DCNDemoListener(this);
 dcr.addListener(list);

 // second step: add objects in the registration:
 Statement stmt = conn.createStatement();
 // associate the statement with the registration:
 ((OracleStatement)stmt).setDatabaseChangeRegistration(dcr);

Chapter 27
Deleting a Registration

27-6

 ResultSet rs = stmt.executeQuery("select * from dept where deptno='45'");
 while (rs.next())
 {}
 String[] tableNames = dcr.getTables();
 for(int i=0;i<tableNames.length;i++)
 System.out.println(tableNames[i]+" is part of the registration.");
 rs.close();
 stmt.close();
 }
 catch(SQLException ex)
 {
 // if an exception occurs, we need to close the registration in order
 // to interrupt the thread otherwise it will be hanging around.
 if(conn != null)
 conn.unregisterDatabaseChangeNotification(dcr);
 throw ex;
 }
 finally
 {
 try
 {
 // Note that we close the connection!
 conn.close();
 }
 catch(Exception innerex){ innerex.printStackTrace(); }
 }

 synchronized(this)
 {
 // The following code modifies the dept table and commits:
 try
 {
 OracleConnection conn2 = connect();
 conn2.setAutoCommit(false);
 Statement stmt2 = conn2.createStatement();
 stmt2.executeUpdate("insert into dept (deptno,dname) values ('45','cool
dept')",
Statement.RETURN_GENERATED_KEYS);
 ResultSet autoGeneratedKey = stmt2.getGeneratedKeys();
 if(autoGeneratedKey.next())
 System.out.println("inserted one row with
ROWID="+autoGeneratedKey.getString(1));
 stmt2.executeUpdate("insert into dept (deptno,dname) values ('50','fun
dept')",
Statement.RETURN_GENERATED_KEYS);
 autoGeneratedKey = stmt2.getGeneratedKeys();
 if(autoGeneratedKey.next())
 System.out.println("inserted one row with
ROWID="+autoGeneratedKey.getString(1));
 stmt2.close();
 conn2.commit();
 conn2.close();
 }
 catch(SQLException ex) { ex.printStackTrace(); }

 // wait until we get the event
 try{ this.wait();} catch(InterruptedException ie) {}
 }

 // At the end: close the registration (comment out these 3 lines in order
 // to leave the registration open).

Chapter 27
Deleting a Registration

27-7

 OracleConnection conn3 = connect();
 conn3.unregisterDatabaseChangeNotification(dcr);
 conn3.close();
 }

 /**
 * Creates a connection the database.
 */
 OracleConnection connect() throws SQLException
 {
 OracleDriver dr = new OracleDriver();
 Properties prop = new Properties();
 prop.setProperty("user",DBChangeNotification.USERNAME);
 prop.setProperty("password",DBChangeNotification.PASSWORD);
 return (OracleConnection)dr.connect(DBChangeNotification.URL,prop);
 }
}
/**
 * DCN listener: it prints out the event details in stdout.
 */
class DCNDemoListener implements DatabaseChangeListener
{
 DBChangeNotification demo;
 DCNDemoListener(DBChangeNotification dem)
 {
 demo = dem;
 }
 public void onDatabaseChangeNotification(DatabaseChangeEvent e)
 {
 Thread t = Thread.currentThread();
 System.out.println("DCNDemoListener: got an event ("+this+" running on thread "+t
+")");
 System.out.println(e.toString());
 synchronized(demo){ demo.notify();}
 }
}

Chapter 27
Deleting a Registration

27-8

Part VI
High Availability

This section provides information about the high availability features of Oracle
Database 12c Release 2 (12.2.0.1).

Part VI contains the following chapters:

• Transaction Guard for Java

• Application Continuity for Java

• Oracle JDBC Support for FAN Events

• Transparent Application Failover

• Single Client Access Name

28
Transaction Guard for Java

Oracle Database 12c Release 1 (12.1) introduced Transaction Guard feature that
provides a generic infrastructure for at-most-once execution during planned and
unplanned outages and duplicate submissions. This chapter discusses Transaction
Guard for Java in the following sections:

• Overview of Transaction Guard for Java

• Transaction Guard Support for XA Transactions

• Transaction Guard for Java APIs

• Complete Example:Using Transaction Guard APIs

• About Using Server-Side Transaction Guard APIs

28.1 Overview of Transaction Guard for Java
For the current applications, determining the outcome of the last commit operation in a
guaranteed and scalable manner, following a communication failure to the server, is
an unsolved problem. In many cases, the end users are asked to follow certain steps
to avoid resubmitting duplicate request. For example, some applications warn users
not to click the Submit button twice because if it is not followed, then users may
unintentionally purchase the same items twice and submit multiple payments for the
same invoice.

To solve this problem, Transaction Guard for Java provides transaction idempotence,
that is, every transaction has at-most-once execution that prevents applications from
submitting duplicate transactions. Every transaction is tagged with a Logical
Transaction Identifier (LTXID), which can be used by the application after the
occurrence of a failure to verify whether the transaction had committed before the
failure or not. For example, if the commit calls do not return, then, using the LTXID, the
application can find out whether it succeeded or not.

See Also:

Oracle Database Development Guide

The Application Continuity for Java feature uses Transaction Guard for Java internally,
which enables transparent session recovery and replay of SQL statements (queries
and DMLs) since the beginning of the in-flight transaction. Application Continuity
enables recovery of work after the occurrence of a planned or unplanned outage and
Transaction Guard for Java ensures transaction idempotence. When an outage
occurs, the recovery restores the state exactly as it was before the failure occurred.

Related Topics

• Application Continuity for Java

28-1

28.2 Transaction Guard Support for XA Transactions
Starting from Oracle Database 12c Release 2 (12.2.0.1), Transaction Guard provides
support for XA transactions for one-phase commit optimization, read-only optimization,
and promotable XA. Transaction Guard with XA provides safe replay following
recoverable outages for XA transactions. With the addition of XA support, Transaction
Managers can now provide replay with idempotence enforced more easily using
Transaction Guard.

Note:

For using Transaction Guard with XA, during session check-out from the
connection pool, you must verify that the database version is Oracle 12c
Release 2 (12.2.0.1) and Transaction Guard is enabled.

A new server protocol provides a guaranteed commit outcome when the commit is
one-phase managed by the database, and switches to a disabled mode while the
Transaction Manager coordinates a transaction for that session. The new protocol sets
a status flag in the LTXID that validates and invalidates access to the LTXID, based on
the current transaction owner.

The protocol is intelligent in its handling that XA can encompass many sessions and
many branches for the one XA transaction. As a further challenge, once a branch is
suspended, a session is available for different transactions, while the original
transaction remains active. There is no requirement to prepare or commit XA
transactions on the same session or RAC instance that created the original branches.
Transaction Guard for XA uses the following two new methods for handling commit
outcome at the database for one-phase XA transactions, while the Transaction
Manager continues to handle commit-outcome for two-phase transactions:

• Using the first method, the driver marks the LTXID provisional until a recoverable
error, or any other named condition, occurs on that session. When a recoverable
error (or any other condition) occurs, the LTXID at the client is marked final. The
guaranteed commit outcome is provided only when the LTXID is final at the client,
and at the server that LTXID has a VALID status, indicating that the database
owns that transaction. Any other access attempt returns an error.

• Using the second method, the client driver does not provide the LTXID to the
application until a recoverable error, or other named condition, occurs on that
session.

28.3 How to Use Transaction Guard with XA
This section contains the following sections:

Obtaining the Commit Outcome with Promotable XA

For local transactions, the request obtains an LTXID as the transaction key, when
there is a recoverable exception. When a second branch starts, then the request is
promoted to XA, or converted to XA, and a Global Transaction ID (GTRID) is allocated

Chapter 28
Transaction Guard Support for XA Transactions

28-2

to it. If a recoverable outage occurs during commit processing, where the application
does not receive a reply from the Transaction Manager, then the application can ask a
Transaction Manager for the outcome. Most requests to the database use either local
transactions or single branch optimization. When you use either local transactions or
promotable XA, then there is no overhead in round trips and management for XA,
because the majority of the transactions are local. The workflow of these transactions
follows:

1. Prior to converting to XA, transaction processing is local. Authentication, SELECT
statements, and local transactions carry and use the LTXID of the local
transaction.

2. The Transaction Manager allocates a GTRID to the transaction only when it starts
to use XA due to opening a second branch of the transaction.

3. Following a recoverable error, when the application does not receive a commit
outcome, if the transaction is local, then the Transaction Manager can use the
LTXID with the GET_LTXID_OUTCOME procedure to retrieve the commit outcome and
return COMMITTED or UNCOMMITTED outcome to the application.

Replaying if Promotable XA Is Added

Before being promoted, promotable XA supports RDBMS commits through calls and
settings that are not supported by static XA. These calls include auto-commit mode,
DDL, DCL, COMMIT embedded in PL/SQL, and COMMIT through remote procedure
calls. The COMMIT outcome for these user calls and modes is controlled by the
RDBMS, and following an error, the commit outcome can be found using Transaction
Guard.

Until promoted, the Transaction Manager is unaware whether the request has issued
any COMMIT or not. If the Transaction Manager wishes to replay a request following a
recoverable error, then the Transaction Manager must determine if any RDBMS
COMMIT has occurred. If any RDBMS COMMIT occurs, or can occur, then replay
does not happen. The GET_LTXID_OUTCOME procedure is insufficient in determining this
because the procedure only reports the current transaction outcome. If the LTXID is
changed, then the transaction is committed. So, the invocation of the LTXID callback
indicates that the transaction is committed.

28.4 Transaction Guard for Java APIs
This section discusses the APIs associated with Transaction Guard for Java for the
following activities:

• Retrieving the Logical Transaction Identifiers

• Retrieving the Updated Logical Transaction Identifiers

28.4.1 Retrieving the Logical Transaction Identifiers
Use the getLogicalTransactionId method of the oracle.jdbc.OracleConnection
interface to retrieve the current Logical Transaction Identifiers that are sent by the
server. This method call does not make a database round-trip.

Example

 OracleConnection oconn = (OracleConnection) ods.getConnection();
 ...

Chapter 28
Transaction Guard for Java APIs

28-3

 // Getting the 1st LTXID after connecting
 LogicalTransactionId firstLtxid = oconn.getLogicalTransactionId();

28.4.2 Retrieving the Updated Logical Transaction Identifiers
Use the oracle.jdbc.LogicalTransactionIdEventListener interface for receiving
updates to Logical Transaction Identifiers. You must implement this interface in your
application to process the Logical Transaction Identifier events.

28.4.2.1 Registering Event Listeners
Use the addLogicalTransactionIdEventListener method to register a listener to the
Logical Transaction Identifier events.

Example

 OracleConnection oconn = (OracleConnection) ods.getConnection();
 ...
 // The subsequent LTXID updates can be obtained through the listener
 oconn.addLogicalTransactionIdEventListener(this);

You can also use the
addLogicalTransactionIdEventListener(LogicalTransactionIdEventListener
listener, java.util.concurrent.Executor executor) method to register a listener
with an executor.

28.4.2.2 Unregistering Event Listeners
Use the removeLogicalTransactionIdEventListener method to unregister a listener
from the Logical Transaction Identifier events.

Example

 OracleConnection oconn = (OracleConnection) ods.getConnection();
 ...
 // The subsequent LTXID updates can be obtained through the listener
 oconn.removeLogicalTransactionIdEventListener(this);

28.5 Complete Example:Using Transaction Guard APIs
The following is a complete example using the Transaction Guard APIs.

 import oracle.jdbc.pool.OracleDataSource;
 import oracle.jdbc.OracleConnection;
 import oracle.jdbc.LogicalTransactionId;
 import oracle.jdbc.LogicalTransactionIdEvent;
 import oracle.jdbc.LogicalTransactionIdEventListener;

 public class transactionGuardExample
 {
 ...
 ...
 OracleDataSource ods = new OracleDataSource();
 ods.setURL(url);
 ods.setUser("user");

Chapter 28
Complete Example:Using Transaction Guard APIs

28-4

 ods.setPassword("password");

 OracleConnection oconn = (OracleConnection) ods.getConnection();

 // Getting the 1st LTXID after connecting
 LogicalTransactionId firstLtxid = oconn.getLogicalTransactionId();

 // The subsequent LTXID updates can be obtained via the listener
 oconn.addLogicalTransactionIdEventListener(this);
 }

 public class LtxidListenerImpl
 implements LogicalTransactionIdEventListener
 {
 ...

 public void onLogicalTransactionIdEvent(LogicalTransactionIdEvent ltxidEvent)
 {
 LogicalTransactionId newLtxid = ltxidEvent.getLogicalTransactionId();
 // process newLtxid
 }
 }

28.6 About Using Server-Side Transaction Guard APIs
The DBMS_APP_CONT package contains the GET_LTXID_OUTCOME procedure that contains
the server-side Transaction Guard APIs. This procedure forces the outcome of a
transaction. If the transaction is not committed, then a fake transaction is committed.
Otherwise, the state of the transaction is returned. By default, the EXECUTE privilege for
this package is granted to Database Administrators.

Syntax

 PROCEDURE GET_LTXID_OUTCOME(CLIENT_LTXID IN RAW,
 committed OUT BOOLEAN,
 USER_CALL_COMPLETED OUT BOOLEAN);

Input Parameter

CLIENT_LTXID specifies the LTXID from the client driver.

Output Parameter

COMMITTED specifies that the transaction is committed.

USER_CALL_COMPLETED specifies that the user call, which committed the transaction, is
complete.

Exceptions

SERVER_AHEAD is thrown when the server is ahead of the client. So, the transaction is
an old transaction and must have already been committed.

CLIENT_AHEAD is thrown when the client is ahead of the server. This can only happen if
the server is flashed back or the LTXID is corrupted. In either of these situations, the
outcome cannot be determined.

Chapter 28
About Using Server-Side Transaction Guard APIs

28-5

ERROR is thrown when an error occurs during processing and the outcome cannot be
determined. It specifies the error code raised during the execution of the current
procedure.

Example

Example 28-1 shows how you can call the GET_LTXID_OUTCOME procedure and find out
the outcome of an LTXID:

Example 28-1 Finding Out the Outcome of an LTXID

 ...
 OracleConnection oconn = (OracleConnection) ods.getConnection();
 LogicalTransactionId ltxid = oconn.getLogicalTransactionId();
 boolean committed = false;
 boolean call_completed = false;

 try
 {
 CallableStatement cstmt = oconn.prepareCall(GET_LTXID_OUTCOME);
 cstmt.setObject(1, ltxid);
 cstmt.registerOutParameter(2, OracleTypes.BIT);
 cstmt.registerOutParameter(3, OracleTypes.BIT);

 cstmt.execute();

 committed = cstmt.getBoolean(2);
 call_completed = cstmt.getBoolean(3);

 System.out.println("LTXID committed ? " + committed);
 System.out.println("User call completed ? " + call_completed);
 }
 catch (SQLException sqlexc)
 {
 System.out.println("Calling GET_LTXID_OUTCOME failed");
 sqlexc.printStackTrace();
 }

Chapter 28
About Using Server-Side Transaction Guard APIs

28-6

29
Application Continuity for Java

The outages of the underlying software, hardware, communications, and storage
layers can cause application execution to fail. In the worst cases, the middle-tier
servers may need to be restarted to deal with the logon storms1. To overcome such
problems, Oracle Database 12c Release 1 (12.1) introduced the Application Continuity
feature that masks database outages to the application and end users are not exposed
to such outages.

Note:

• You must use Transaction Guard for using this feature.

• Application Continuity is a feature of the Oracle JDBC Thin driver and is
not supported by JDBC OCI driver.

• Explicit switch of container and service in applications through the ALTER
SESSION SET CONTAINER statement is not supported with Application
Continuity.

Application Continuity provides a general purpose, application-independent solution
that enables recovery of work from an application perspective, after the occurrence of
a planned or unplanned outage. The outage can be related to system, communication,
or hardware following a repair, a configuration change, or a patch application.

This chapter discusses the JDBC aspect of Application Continuity in the following
sections:

• About Configuring Oracle JDBC for Application Continuity for Java

• About Configuring Oracle Database for Application Continuity for Java

• Application Continuity with DRCP

• Application Continuity Support for XA Data Source

• About Identifying Request Boundaries in Application Continuity for Java

• Support for Transparent Application Continuity

• Establishing the Initial State Before Application Continuity Replays

• About Delaying the Reconnection in Application Continuity for Java

• About Retaining Mutable Values in Application Continuity for Java

• Application Continuity Statistics

• About Disabling Replay in Application Continuity for Java

1 "A Logon storm is a sudden increase in the number of client connection requests."

29-1

Related Topics

• Transaction Guard for Java

29.1 About Configuring Oracle JDBC for Application
Continuity for Java

You must use the
oracle.jdbc.replay.OracleDataSourceImpl,oracle.jdbc.replay.OracleConnectio
nPoolDataSourceImpl, or oracle.jdbc.replay.driver.OracleXADataSourceImpl
data source to obtain JDBC connections. You can use both
oracle.jdbc.replay.OracleDataSourceImpl and
oracle.jdbc.replay.OracleConnectionPoolDataSourceImplin a standalone manner,
or configure them as connection factories for a connection pool, such as Universal
Connection Pool (UCP), or Oracle WebLogic Server connection pool.

Starting from Oracle Database 12c Release 2 (12.2.0.1), the JDBC Replay Driver
provides a new data source, the XA Replay Data Source, which supports JDBC
operations replay, and also works with both UCP data source and WebLogic Active
GridLink single-pool data source for all the Oracle RAC features, including Fast
Connection Failover, Runtime Connection Load-Balancing, and all types of RAC-
instance affinities. For using this data source, your application must implement the
oracle.jdbc.replay.OracleXADataSource interface. The actual data source
implementation class is oracle.jdbc.replay.driver.OracleXADataSourceImpl. You
can specify the implementation class to UCP data sources and Oracle WebLogic
Server GridLink data source as a connection factory. The factory class for JNDI is
oracle.jdbc.replay.OracleXADataSourceFactory.

Note:

• The XA replay data source does not provide a configurable replay mode.
For enabling replay, you must use the replay data source and set
FAILOVER_TYPE to TRANSACTION on the database service at the server
side, if not set already.

• Starting from Oracle Database Release 18c, you can also set
FAILOVER_TYPE to AUTO for using Transparent Application Continuity.

See Also:

Oracle Real Application Clusters Administration and
Deployment Guide

• For enabling and disabling replay dynamically, you must use a separate
API available on the replay connection proxy. The XA replay data source
does not provide connection pooling. Any getXAConnection method call
produces a new JDBC XAConnection proxy dynamically, which holds a
new JDBC physical connection as the delegate. The delegate is an
Oracle JDBC driver object.

Chapter 29
About Configuring Oracle JDBC for Application Continuity for Java

29-2

The following code snippet illustrates the usage of
oracle.jdbc.replay.OracleDataSourceImpl and
oracle.jdbc.replay.OracleConnectionPoolDataSourceImpl in a standalone JDBC
application:

import java.sql.Connection;
import javax.sql.PooledConnection;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.replay.OracleDataSourceFactory;
import oracle.jdbc.replay.OracleDataSource;
import oracle.jdbc.replay.OracleConnectionPoolDataSource;

...
{
......
OracleDataSource rds = OracleDataSourceFactory.getOracleDataSource();
rds.setUser(user);
rds.setPassword(passwd);
rds.setURL(url);
...... // Other data source configuration like callback, timeouts, etc.

Connection conn = rds.getConnection();
((OracleConnection) conn).beginRequest(); // Explicit request begin
...... // JDBC calls protected by Application Continuity
((OracleConnection) conn).endRequest(); // Explicit request end
conn.close();

OracleConnectionPoolDataSource rcpds =
OracleDataSourceFactory.getOracleConnectionPoolDataSource();
rcpds.setUser(user);
rcpds.setPassword(passwd);
rcpds.setURL(url);
...... // other data source configuration like callback, timeouts, and so on

PooledConnection pc = rcpds.getPooledConnection();
Connection conn2 = pc.getConnection(); // Implicit request begin
...... // JDBC calls protected by Application Continuity
conn2.close(); // Implicit request end
......

You must remember the following points while using the connection URL:

• Always use the thin driver in the connection URL.

• Always connect to a service. Never use instance_name or SID because these do
not direct to known good instances and SID is deprecated.

• If the addresses in the ADDRESS_LIST at the client does not match the
REMOTE_LISTENER setting for the database, then it does not connect showing
services cannot be found. So, the addresses in the ADDRESS_LIST at the client
must match the REMOTE_LISTENER setting for the database:

– If REMOTE_LISTENER is set to the SCAN_VIP, then the ADDRESS_LIST uses
SCAN_VIP

– If REMOTE_LISTENER is set to the host VIPs, then the ADDRESS_LIST uses the
same host VIPs

– If REMOTE_LISTENER is set to both SCAN_VIP and host VIPs, then the
ADDRESS_LIST uses SCAN_VIP and the same host VIPs

Chapter 29
About Configuring Oracle JDBC for Application Continuity for Java

29-3

Note:

For Oracle clients prior to release 11.2, the ADDRESS_LIST must be
upgraded to use SCAN, which means expanding the ADDRESS_LIST
to three ADDRESS entries corresponding to the three SCAN IP
addresses.

If such clients connect to a database that is upgraded from an earlier
release through Database Upgrade Assistant, then you must retain
the ADDRESS_LIST of these clients set to the HOST VIPs. However, if
REMOTE_LISTENER is changed to ONLY SCAN, or the clients are moved
to a newly installed Oracle Database 12c Release 1, where
REMOTE_LISTENER is ONLY SCAN, then they do not get a complete
service map, and may not always be able to connect.

• Set RETRY_COUNT, RETRY_DELAY, CONNECT_TIMEOUT, and
TRANSPORT_CONNECT_TIMEOUT parameters in the connection string. This is a
general recommendation for configuring the JDBC thin driver connections, starting
from Oracle Database Release 12.1.0.2. These settings improve acquiring new
connections at runtime, at replay, and during work drains for planned outages.

The CONNECT_TIMEOUT parameter is equivalent to the
SQLNET.OUTBOUND_CONNECT_TIMEOUT parameter in the sqlnet.ora file and applies
to the full connection. The TRANSPORT_CONNECT_TIMEOUT parameter applies as per
the ADDRESS parameter. If the service is not registered for a failover or restart, then
retrying is important when you use SCAN. For example, for using remote listeners
pointing to SCAN addresses, you should use the following settings:

jdbc:oracle:thin:@(DESCRIPTION =
 (TRANSPORT_CONNECT_TIMEOUT=3000)
 (RETRY_COUNT=20)(RETRY_DELAY=3)(FAILOVER=ON)
 (ADDRESS_LIST =(ADDRESS=(PROTOCOL=tcp)
 (HOST=CLOUD-SCANVIP.example.com)(PORT=5221))
 (CONNECT_DATA=(SERVICE_NAME=orcl)))

REMOTE_LISTENERS=CLOUD-SCANVIP.example.com:5221

Similarly, for using remote listeners pointing to VIPs at the database, you should
use the following settings:

jdbc:oracle:thin:@(DESCRIPTION =
(TRANSPORT_CONNECT_TIMEOUT=3000)
(CONNECT_TIMEOUT=60)(RETRY_COUNT=20)(RETRY_DELAY=3)(FAILOVER=ON)
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=CLOUD-VIP1.example.com)(PORT=5221))
(ADDRESS=(PROTOCOL=tcp)(HOST=CLOUD-VIP2.example.com)(PORT=5221))
 (ADDRESS=(PROTOCOL=tcp)(HOST=CLOUD-VIP3.example.com)(PORT=5221)))
(CONNECT_DATA=(SERVICE_NAME=orcl)))

REMOTE_LISTENERS=CLOUD-VIP1.example.com:5221

Chapter 29
About Configuring Oracle JDBC for Application Continuity for Java

29-4

See Also:

– Oracle Database Net Services Reference for more information about
local naming parameters

– Oracle Real Application Clusters Administration and Deployment
Guide

Related Topics

• Data Sources and URLs

29.1.1 Support for Concrete Classes with Application Continuity

Starting from Oracle Database Release 18c, JDBC driver supports the following
concrete classes with Application Continuity:

• oracle.sql.CLOB

• oracle.sql.NCLOB

• oracle.sql.BLOB

• oracle.sql.BFILE

• oracle.sql.STRUCT

• oracle.sql.REF

• oracle.sql.ARRAY

29.2 About Configuring Oracle Database for Application
Continuity for Java

You must have the following configuration for Oracle Database to use Application
Continuity for Java:

• Use Oracle Database 12c Release 1 (12.1) or later

• If you are using Oracle Real Application Clusters (Oracle RAC) or Oracle Data
Guard, then ensure that FAN is configured with Oracle Notification System (ONS)
to communicate with Oracle WebLogic Server or the Universal Connection Pool
(UCP)

• Use an application service for all database work. To create the service you must:

– Run the SRVCTL command if you are using Oracle RAC

– Use the DBMS_SERVICE package if you are not using Oracle RAC

• Set the required properties on the service for replay and load balancing. For
example, set:

– aq_ha_notifications = TRUE for enabling FAN notification

– FAILOVER_TYPE = TRANSACTION or FAILOVER_TYPE = AUTO for using
Application Continuity

Chapter 29
About Configuring Oracle Database for Application Continuity for Java

29-5

– COMMIT_OUTCOME = TRUE for enabling Transaction Guard

– REPLAY_INITIATION_TIMEOUT = 900 for setting the duration in seconds for
which replay will occur

– FAILOVER_RETRIES = 30 for specifying the number of connection retries for
each replay

– FAILOVER_DELAY = 10 for specifying the delay in seconds between connection
retries

– GOAL = SERVICE_TIME, if you are using Oracle RAC, then this is a
recommended setting

– CLB_GOAL = LONG, typically useful for closed workloads. If you are using
Oracle RAC, then this is a recommended setting. For most of the other
workloads, SHORT is the recommended setting.

• Do not use the database service, that is, the default service corresponding to the
DB_NAME or DB_UNIQUE_NAME. This service is reserved for Oracle Enterprise
Manager and for DBAs. Oracle does not recommend the use of the database
service for high availability because this service cannot be:

– Enabled and disabled

– Relocated on Oracle RAC

– Switched over to Oracle Data Guard

See Also:

Oracle Database Development Guide for more information on the operation
and usage of Application Continuity.

29.3 Application Continuity with DRCP
Oracle Database Release 18c JDBC driver supports Application Continuity when
Database Resident Connection Pooling (DRCP) is enabled on the server side. For
using Application Continuity with DRCP, you must configure an application service to a
server that uses DRCP. The following code snippet shows how to use Application
Continuity with DRCP:

Example 29-1 Using Application Continuity with DRCP

...
String url = "jdbc:oracle:thin:@(DESCRIPTION =
 (TRANSPORT_CONNECT_TIMEOUT=3000)
 (RETRY_COUNT=20)(RETRY_DELAY=3)(FAILOVER=ON)
 (ADDRESS_LIST =(ADDRESS=(PROTOCOL=tcp)
 (HOST=CLOUD-SCANVIP.example.com)(PORT=5221))
 (CONNECT_DATA=(SERVICE_NAME=ac-service)
(SERVER=POOLED)))";
PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

Chapter 29
Application Continuity with DRCP

29-6

// Set DataSource Property
pds.setUser("HR");
pds.setPassword("hr");
System.out.println ("Connecting to " + url);
pds.setURL(url);
pds.setConnectionPoolName("HR-Pool1");
pds.setMinPoolSize(2);
pds.setMaxPoolSize(3);
pds.setInitialPoolSize(2);
Properties prop = new Properties();
prop.put("oracle.jdbc.DRCPConnectionClass", "HR-Pool1");
pds.setConnectionProperties(prop);
...

Related Topics

• Overview of Database Resident Connection Pooling

Related Topics

• About Configuring Oracle Database for Application Continuity for Java

29.4 Application Continuity Support for XA Data Source
Oracle Database 12c Release 2 (12.2.0.1) introduced a new feature that enhances
Application Continuity with support for Oracle XA data source
(javax.sql.XADataSource), which is similar to non-XA data source
(javax.sql.DataSource). Both JDBC and Java Transaction API (JTA) allow a JDBC
connection to interchangeably participate in local and global/XA transactions.
However, many customer applications obtain connections from an XA data source, but
use these connections to perform only local transactions. With the new feature,
Application Continuity also covers applications that are using XA-capable data sources
but with local transactions, including local transactions that are promotable to
global/XA transactions. So, the benefits of Application Continuity, such as, failover and
forward-recovery are extended to these applications.

Note:

You must use Transaction Guard 12.2 for using this feature.

Whenever an underlying physical connection participates in a global/XA transaction, or
engages in any XA operation, replay is disabled on that connection. All other XA
operations function normally, but the application does not get Application Continuity
protection.

Once replay is disabled on a connection for the above reasons, it remains disabled
until the next request begins. Switching from global/XA transaction to local transaction
mode does not automatically reenable replay on a connection.

Chapter 29
Application Continuity Support for XA Data Source

29-7

The following code snippet illustrates how replay is supported for local transactions,
and disabled for XA transaction, when the connections are obtained from
OracleXADataSource:

import javax.transaction.xa.*;
import oracle.jdbc.replay.OracleXADataSource;
import oracle.jdbc.replay.OracleXADataSourceFactory;
import oracle.jdbc.replay.ReplayableConnection;

OracleXADataSource xards =
OracleXADataSourceFactory.getOracleXADataSource();
xards.setURL(connectURL);
xards.setUser(<user_name>);
xards.setPassword(<password>);
XAConnection xaconn = xards.getXAConnection();

// Implicit request begins
Connection conn = xaconn.getConnection();

/* Local transaction case */
// Request-boundary detection OFF
((ReplayableConnection) conn).beginRequest();
conn.setAutoCommit(false);
PreparedStatement pstmt=conn.prepareStatement(“select
cust_first_name,cust_last_name from customers where customer_id=1");
ResultSet rs=pstmt.executeQuery();

// Outage happens at this point
// Replay happens at this point
rs.next();
rs.close();
pstmt.close();
((ReplayableConnection) conn).endRequest();
...

/* Global/XA transaction case */
((ReplayableConnection) conn).beginRequest();
conn.setAutoCommit(false);
XAResource xares = xaconn.getXAResource();
Xid xid = createXid();

// Replay is disabled here
xares.start(xid, XAResource.TMNOFLAGS);
conn.prepareStatement(“INSERT INTO TEST_TAB VALUES(200, 'another new
record')”);

// outage happens at this point
try {

//No replay here and throws exception
conn.executeUpdate();
}

// sqlrexc.getNextException() shows the reason for the replay failure

Chapter 29
Application Continuity Support for XA Data Source

29-8

catch (SQLRecoverableException sqlrexc) {

 …...
}

29.5 About Identifying Request Boundaries in Application
Continuity for Java

A Request is a unit of work on a physical connection to Oracle Database that is
protected by Application Continuity. Request demarcation varies with specific use-
case scenarios. A request begins when a connection is borrowed from the Universal
Connection Pool (UCP) or WebLogic Server connection pool, and ends when this
connection is returned to the connection pool.

The JDBC driver provides explicit request boundary declaration APIs beginRequest
and endRequest in the oracle.jdbc.OracleConnection interface. These APIs enable
applications, frameworks, and connection pools to indicate to the JDBC Replay Driver
about demarcation points, where it is safe to release the call history, and to enable
replay if it had been disabled by a prior request. At the end of the request, the JDBC
Replay Driver purges the recorded history on the connection, where the API is called.
This helps to further conserve memory consumption for applications that use the same
connections for an extended period of time without returning them to the pool.

For the connection pool to work, the application must get connections when needed,
and release connections when not in use. This scales better and provides request
boundaries transparently. The APIs have no impact on the applications other than
improving resource consumption, recovery, and load balancing performance. These
APIs do not involve altering a connection state by calling any JDBC method, SQL, or
PL/SQL. An error is returned if an attempt is made to begin or end a request while a
local transaction is open.

29.6 Support for Transparent Application Continuity
Oracle Database Release 18c introduced the Transparent Application Continuity
feature, which is a functional mode of Application Continuity. Transparent Application
Continuity transparently tracks and records session and transactional state, so that a
database session can be recovered following recoverable outages. This is performed
safely and without the need for any knowledge of the application or application code
changes. Transparency is achieved by using a state-tracking infrastructure that
categorizes session state usage as an application issues user calls. This feature
enables the driver to detect and inject possible request boundaries, which are known
as implicit request boundaries. For an implicit request boundary:

• No objects are open

• Cursors are returned to the driver statement cache

• No transactions are open

The session state in such a case is known to be restorable. The driver either closes
the current capture and starts a new event, or enables capture if there had been a
disabling event. On the next call to the server, the server verifies and, if applicable,
creates a request boundary, where there was previously no explicit boundary.

Chapter 29
About Identifying Request Boundaries in Application Continuity for Java

29-9

To use Transparent Application Continuity, you must set the server-side service
attribute FAILOVER_TYPE on the database service to AUTO.

Support for implicit request helps to reduce application failover recovery time and
optimizes Application Continuity. Using Transparent Application Continuity, the server
and the drivers can track transaction and session state usage. However, this feature
should be used with caution for applications that change server session states during
a request. The JDBC Thin driver provides the oracle.jdbc.enableImplicitRequests
property to turn off implicit requests, if needed. This property can be set at the system
level, which applies to all connections, or at the connection level, which applies to a
particular connection. By default, the value of this property is true, which means that
support for implicit request is enabled.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide

Starting from Oracle Database Release 19c, if you set the value of the FAILOVER_TYPE
service attribute to AUTO, then the Oracle JDBC driver implicitly begins a request on
each new physical connection created through the replay data source. With this
feature, applications using third-party connection pools can use Transparent
Application Continuity (TAC) easily, without making any code change to inject request
boundaries.

This implicit beginRequest applies only to the replay data source, and only to the
physical connections created during runtime, when TAC is enabled. The driver does
not implicitly begin a request after each reconnection during replay attempts (that is, a
beginRequest is not implicitly injected during a replay connection) or in manual
Application Continuity mode, where the FAILOVER_TYPE service attribute is set to
TRANSACTION.

If you want to turn off this feature explicitly, you can set the value of the Java system
property oracle.jdbc.beginRequestAtConnectionCreation to false. The default
value of this property is true.

Related Topics

• About Enabling FAILOVER_RESTORE

29.7 Establishing the Initial State Before Application
Continuity Replays

Non-transactional session state (NTSS) is state of a database session that exists
outside database transactions and is not protected by recovery. For applications that
use stateful requests, the non-transactional state is re-established as the rebuilt
session.

For applications that set state only at the beginning of a request, or for stateful
applications that gain performance benefits from using connections with a preset state,
one among the following callback options are provided:

• No Callback

Chapter 29
Establishing the Initial State Before Application Continuity Replays

29-10

• Connection Labeling

• Connection Initialization Callback

• About Enabling FAILOVER_RESTORE

29.7.1 No Callback
In this scenario, the application builds up its own state during each request.

29.7.2 Connection Labeling
This scenario is applicable only to Universal Connection Pool (UCP) and Oracle
WebLogic server. The application can be modified to take advantage of the preset
state on connections. Connection Labeling APIs determine how well a connection
matches, and use a callback to populate the gap when a connection is borrowed.

See Also:

Oracle Universal Connection Pool Developer’s Guide

29.7.3 Connection Initialization Callback
In this scenario, the replay driver uses an application callback to set the initial state of
the session during runtime and replay. The JDBC replay driver provides an optional
connection initialization callback interface as well as methods for registering and
unregistering such callbacks.

When registered, the initialization callback is executed at each successful
reconnection following a recoverable error. An application is responsible for ensuring
that the initialization actions are the same as that on the original connection before
failover. If the callback invocation fails, then replay is disabled on that connection.

This section discusses initialization callbacks in the following sections:

• Creating an Initialization Callback

• Registering an Initialization Callback

• Removing or Unregistering an Initialization Callback

29.7.3.1 Creating an Initialization Callback
To create a JDBC connection initialization callback, an application implements the
oracle.jdbc.replay.ConnectionInitializationCallback interface. One callback is
allowed for every instance of the oracle.jdbc.replay.OracleDataSource interface.

Note:

This callback is only invoked during failover, after a successful reconnection.

Chapter 29
Establishing the Initial State Before Application Continuity Replays

29-11

Example

The following code snippet demonstrates a simple initialization callback
implementation:

import oracle.jdbc.replay.ConnectionInitializationCallback;
class MyConnectionInitializationCallback implements ConnectionInitializationCallback
{
 public MyConnectionInitializationCallback()
 {
 ...
 }
 public void initialize(java.sql.Connection connection) throws SQLException
 {
 // Reset the state for the connection, if necessary (like ALTER SESSION)
 ...
 }
 }

For applications using an XA data source, the connection initialization callback is
registered on the XA replay data source. The callback is executed every time when
both of the following happen:

• A connection is borrowed from the connection pool.

• The replay XA data source gets a new physical connection at failover.

Note:

The connection initialization must be idempotent. If the connection is already
initialized, then it must not repeat itself. This enables applications to
reestablish session initial starting point after a failover and before the starting
of replay. The callback execution must leave an open local transaction
without committing it or rolling it back. If this is violated, an exception is
thrown.

If a callback invocation fails, replay is disabled on that connection. For example, an
application embeds the set up phase for a connection in this callback.

29.7.3.2 Registering an Initialization Callback
Use the following method that the JDBC Replay Driver provides in the
oracle.jdbc.replay.OracleDataSource interface for registering a connection
initialization callback:

registerConnectionInitializationCallback(ConnectionInitializationCallback cbk)

One callback is allowed for every instance of the OracleDataSource interface.

For using an XA Data Source, use the
registerConnectionInitializationCallback(ConnectionInitializationCallback
cbk) method in the oracle.jdbc.replay.OracleXADataSource interface.

Chapter 29
Establishing the Initial State Before Application Continuity Replays

29-12

29.7.3.3 Removing or Unregistering an Initialization Callback
Use the following method that the JDBC Replay Driver provides in the
oracle.jdbc.replay.OracleDataSource interface for unregistering a connection
initialization callback:

unregisterConnectionInitializationCallback(ConnectionInitializationCallback cbk)

For using an XA Data Source, use the
unregisterConnectionInitializationCallback(ConnectionInitializationCallbac
k cbk) method in the oracle.jdbc.replay.OracleXADataSource interface.

29.7.4 About Enabling FAILOVER_RESTORE

FAILOVER_RESTORE service attribute was introduced in Oracle Database 12c Release 2
(12.2.0.1). Setting FAILOVER_RESTORE to LEVEL1 automatically restores the common
initial state before replaying a request. By default, the value of the FAILOVER_RESTORE
attribute is set to NONE, which means that it is disabled.

Starting from Oracle Database Release 18c, you can also set the value of this attribute
to AUTO. Also, if you set the value of the FAILOVER_TYPE attribute to AUTO, then
FAILOVER_RESTORE is set to AUTO automatically. You cannot change the value of
FAILOVER_RESTORE to anything else as long as FAILOVER_TYPE is set to AUTO. When
FAILOVER_RESTORE is set to AUTO, then the common initial state is also set. As far as
session state restore is concerned, this setting provides the same function as
FAILOVER_RESTORE set to LEVEL1.

See Also:

Oracle® Real Application Clusters Administration and Deployment Guide

Chapter 29
Establishing the Initial State Before Application Continuity Replays

29-13

Note:

For Application Continuity for Java available with Oracle Database Release
18c, the following initial states are supported for FAILOVER_RESTORE:

• NLS_CALENDAR

• NLS_CURRENCY

• NLS_DATE_FORMAT

• NLS_DATE_LANGUAGE

• NLS_DUAL_CURRENCY

• NLS_ISO_CURRENCY

• NLS_LANGUAGE

• NLS_LENGTH_SEMANTICS

• NLS_NCHAR_CONV_EXCP

• NLS_NUMERIC_CHARACTER

• NLS_SORT

• NLS_TERRITORY

• NLS_TIME_FORMAT

• NLS_TIME_TZ_FORMAT

• NLS_TIMESTAMP_FORMAT

• NLS_TIMESTAMP_TZ_FORMAT

• TIME_ZONE (OCI, ODP.NET 12201)

• CURRENT_SCHEMA

• MODULE

• ACTION

• CLIENT_ID

• ECONTEXT_ID

• ECONTEXT_SEQ

• DB_OP

• AUTOCOMMIT states (Java and SQL*Plus)

• CONTAINER (PDB) and SERVICE for OCI and ODP.NET

In Oracle Database Release 19c, the following additional initial states are
supported for FAILOVER_RESTORE:

• ERROR_ON_OVERLAP_TIME

• EDITION

• SQL_TRANSLATION_PROFILE

• ROW ARCHIVAL VISIBILITY

• ROLEs

Chapter 29
Establishing the Initial State Before Application Continuity Replays

29-14

• CLIENT_INFO

Note:

For Oracle Database Release 19c, FAILOVER_RESTORE is automatically
enabled in Transparent Application Continuity (TAC) mode.

The following states are excluded from the auto-restoration option because
they are not supported by the Thin driver:

• NLS_COMP

• CALL_COLLECT_TIME

For many applications, enabling FAILOVER_RESTORE is sufficient to automatically
restore the initial state required for AC replay, without the use of a callback. If your
application requires any initial state that is not mentioned in the preceding list, or if the
application prefers explicit control over setting the initial state, then the application
must use a callback, either connection labeling or an initialization callback. When a
callback is configured, it overrides the initial states restored by FAILOVER_RESTORE, in
case the latter is enabled at the same time.

29.8 About Delaying the Reconnection in Application
Continuity for Java

By default, when JDBC Replay Driver initiates a failover, the driver attempts to recover
the in-flight work at an instance where the service is available. For doing this, the
driver must first reestablish a good connection to a working instance. This
reconnection can take some time if the database or the instance needs to be restarted
before the service is relocated and published. So, the failover should be delayed until
the service is available from another instance or database.

You must use the FAILOVER_RETRIES and FAILOVER_DELAY parameters to sustain the
delay because maximum delay is calculated as FAILOVER_RETRIES multiplied by
FAILOVER_DELAY. These parameters can work well in conjunction with a planned
outage, for example, an outage that may make a service unavailable for several
minutes. While setting the FAILOVER_DELAY and FAILOVER_RETRIES parameters, check
the value of the REPLAY_INITIAITION_TIMEOUT parameter first. The default value for
this parameter is 900 seconds. A high value for the FAILOVER_DELAY parameter can
cause replay to be canceled.

Parameter Name Possible Value Default Value

FAILOVER_RETRIES Positive integer zero or above 30

FAILOVER_DELAY Time in seconds 10

Chapter 29
About Delaying the Reconnection in Application Continuity for Java

29-15

29.8.1 Configuration Examples Related to Application Continuity for
Java

This section provides configuration examples for service creation and modification in
the following subsections:

• Creating Services on Oracle RAC

• Modifying Services on Single-Instance Databases

29.8.1.1 Creating Services on Oracle RAC

If you are using Oracle RAC or Oracle RAC One, then use the SRVCTL command to
create and modify services in the following way:

For Transparent Application Continuity

You can create services that use Transparent Application Continuity, as follows:

For policy-managed databases:

$ srvctl add service -db codedb -service GOLD -serverpool ora.Srvpool -
clbgoal SHORT -rlbgoal SERVICE_TIME -failover_restore AUTO -failoverretry
30
-failoverdelay 10 -commit_outcome TRUE -failovertype AUTO -
replay_init_time 1800 -retention 86400 -notification TRUE

For administrator-managed databases:

$ srvctl add service -db codedb -service GOLD -preferred serv1 -available
serv2 -clbgoal SHORT -rlbgoal SERVICE_TIME -failover_restore AUTO
-failoverretry 30 -failoverdelay 10 -commit_outcome TRUE -failovertype
AUTO -replay_init_time 1800 -retention 86400 -notification TRUE

For Manual Application Continuity

You can create services that use manual Application Continuity, as follows:

For policy-managed databases:

$ srvctl add service -db codedb -service GOLD -serverpool ora.Srvpool -
clbgoal SHORT -rlbgoal SERVICE_TIME -failover_restore LEVEL1 -
failoverretry 30
-failoverdelay 10 -commit_outcome TRUE -failovertype TRANSACTION -
replay_init_time 1800 -retention 86400 -notification TRUE

For administrator-managed databases:

$ srvctl add service -db codedb -service GOLD -preferred serv1 -available
serv2 -clbgoal SHORT -rlbgoal SERVICE_TIME -failover_restore LEVEL1

Chapter 29
About Delaying the Reconnection in Application Continuity for Java

29-16

-failoverretry 30 -failoverdelay 10 -commit_outcome TRUE -failovertype
TRANSACTION -replay_init_time 1800 -retention 86400 -notification TRUE

29.8.1.2 Modifying Services on Single-Instance Databases
If you are using a single-instance database, then use the DBMS_SERVICE package to
modify services in the following way:

declare
params dbms_service.svc_parameter_array;
begin
params('FAILOVER_TYPE'):='TRANSACTION';
params('REPLAY_INITIATION_TIMEOUT'):=1800;
params('RETENTION_TIMEOUT'):=604800;
params('FAILOVER_DELAY'):=10;
params('FAILOVER_RETRIES'):=30;
params('commit_outcome'):='true';
params('aq_ha_notifications'):='true';
dbms_service.modify_service('[your service]',params);
end;
/

29.9 About Retaining Mutable Values in Application
Continuity for Java

A mutable object is a variable, function return value, or other structure that returns a
different value each time that it is called. For example, Sequence.NextVal, SYSDATE,
SYSTIMESTAMP, and SYS_GUID. To retain the function results for named functions at
replay, the DBA must grant KEEP privileges to the user who invokes the function. This
security restriction is imposed to ensure that it is valid for replay to save and restore
function results for code that is not owned by that user.

See Also:

Oracle Database Development Guide

29.9.1 Grant and Revoke Interface
You can work with mutables values by using the standard GRANT and REVOKE interfaces
in the following way:

• Dates and SYS_GUID Syntax

• Sequence Syntax

• GRANT ALL Statement

• Rules for Grants on Mutable Values

29.9.1.1 Dates and SYS_GUID Syntax
The DATE_TIME and SYS_GUID syntax is as follows:

Chapter 29
About Retaining Mutable Values in Application Continuity for Java

29-17

GRANT [KEEP DATE TIME|SYSGUID]..[to USER}
REVOKE [KEEP DATE TIME | KEEP SYSGUID] … [from USER]

For example, for EBS standard usage with original dates

Grant KEEP DATE TIME, KEEP SYSGUID to [custom user];
Grant KEEP DATE TIME, KEEP SYSGUID to [apps user];

29.9.1.2 Sequence Syntax
The Sequence syntax can be of the following types:

• Owned Sequence Syntax

• Others Sequence Syntax

Owned Sequence Syntax

ALTER SEQUENCE [sequence object] [KEEP|NOKEEP];

This command retains the original values of sequence.nextval for replaying, so that
the keys match after replay. Most applications need to retain the sequence values at
replay. The ALTER SYNTAX is only for owned sequences.

Others Sequence Syntax

GRANT KEEP SEQUENCE..[to USER] on [sequence object];
REVOKE KEEP SEQUENCE … [from USER] on [sequence object];

For example, use the following command for EBS standard usage with original
sequence values:

Grant KEEP SEQUENCE to [apps user] on [sequence object];
Grant KEEP SEQUENCE to [custom user] on [sequence object];

29.9.1.3 GRANT ALL Statement
The GRANT ALL statement grants KEEP privilege on all the objects of a user. However, it
excludes mutable values, that is, mutable values require explicit grants.

29.9.1.4 Rules for Grants on Mutable Values
Follow these rules while granting privileges on mutable objects:

• If a user has KEEP privilege granted on mutables values, then the objects inherit
mutable access when the SYS_GUID, SYSDATE, and SYSTIMESTAMP functions are
called.

• If the KEEP privilege on mutable values on a sequence object is revoked, then SQL
or PL/SQL blocks using that object will not allow mutable collection or application
for that sequence.

• If granted privileges are revoked between runtime and failover, then the mutable
values that are collected are not applied for replay.

• If new privileges are granted between runtime and failover, mutable values are not
collected and these values are not applied for replay.

Chapter 29
About Retaining Mutable Values in Application Continuity for Java

29-18

29.10 Application Continuity Statistics
The JDBC Replay Driver supports the following statistics for an application using
Application Continuity:

• Total number of requests

• Total number of completed requests

• Total number of calls

• Total number of protected calls

• Total number of calls affected by outages

• Total number of calls triggering replay

• Total number of calls affected by outages during replay

• Total number of successful replay

• Total number of failed replay

• Total number of disabled replay

• Total number of replay attempts

All these metrics are available both on a per-connection basis and across-connections
basis. You can use the following methods for obtaining these statistics:

• getReplayStatistics(StatisticsReportType)

Use the
oracle.jdbc.replay.ReplayableConnection.getReplayStatistics(Statistics
ReportType) method to obtain the snapshot statistics. The argument to this
method is an enum type also defined in the same ReplayableConnection
interface. To obtain statistics across connections, it is best calling this method after
the main application logic. Applications can either use any
oracle.jdbc.replay.ReplayableConnection that is still open, or open a new
connection to the same data source. This applies to applications using both UCP
and WLS data sources, and applications that directly use the replay data source.

• getReplayStatistics()

Use the oracle.jdbc.replay.OracleDataSource.getReplayStatistics()
method to obtain across-connection statistics. This applies only to applications that
directly use replay data source.

Both methods return an oracle.jdbc.replay.ReplayStatistics object, from which
you can retrieve individual replay metrics. The following is a sample output that prints
a ReplayStatistics object as String:

AC Statistics:
===
TotalRequests = 1
TotalCompletedRequests = 1
TotalCalls = 19
TotalProtectedCalls = 19
===
TotalCallsAffectedByOutages = 3

Chapter 29
Application Continuity Statistics

29-19

TotalCallsTriggeringReplay = 3
TotalCallsAffectedByOutagesDuringReplay = 0
===
SuccessfulReplayCount = 3
FailedReplayCount = 0
ReplayDisablingCount = 0
TotalReplayAttempts = 3
===

If you want to clear the accumulated replay statistics per connection or for all
connections, then you can use the following methods:

• oracle.jdbc.replay.ReplayableConnection.clearReplayStatistics(Replayab
leConnection.StatisticsReportType reportType)

• oracle.jdbc.replay.OracleDataSource.clearReplayStatistics()

Note:

All statistics reflect only updates since the latest clearing.

29.11 About Disabling Replay in Application Continuity for
Java

This section describes the following concepts:

• How to Disable Replay

• When to Disable Replay

• Diagnostics and Tracing

29.11.1 How to Disable Replay
If any application module uses a design that is unsuitable for replay, then the disable
replay API disables replay on a per request basis. Disabling replay can be added to
the callback or to the main code by using the disableReplay method of the
oracle.jdbc.replay.ReplayableConnection interface. For example:

if (connection instanceof oracle.jdbc.replay.ReplayableConnection)
{
 ((oracle.jdbc.replay.ReplayableConnection)connection).disableReplay();

}

Disabling replay does not alter the connection state by reexecuting any JDBC method,
SQL or PL/SQL. When replay is disabled using the disable replay API, both recording
and replay are disabled until that request ends. There is no API to reenable replay
because it is invalid to reestablish the database session with time gaps in a replayed
request. This ensures that replay runs only if a complete history of needed calls has
been recorded.

Chapter 29
About Disabling Replay in Application Continuity for Java

29-20

29.11.2 When to Disable Replay
By default, the JDBC replay driver replays following a recoverable error. The disable
replay API can be used in the entry point of application modules that are unable to
lose the database sessions and recover. For example, if the application uses the
UTL_SMTP package and does not want messages to be repeated, then the
disableReplay API affects only the request that needs to be disabled. All other
requests continue to be replayed.

The following are scenarios to consider before configuring an application for replay:

• Application Calls External PL/SQL Actions that Should not Be Repeated

• Application Synchronizes Independent Sessions

• Application Uses Time at the Middle-tier in the Execution Logic

• Application assumes that ROWIds do not change

• Application Assumes that Side Effects Execute Once

• Application Assumes that Location Values Do not Change

29.11.2.1 Application Calls External Systems that Should not Be Repeated
During replay, autonomous transactions and external systems (like PL/SQL calls or
Java calls) can have side effects that are separate from the main transaction. These
side effects are replayed unless you specify otherwise and leave persistent results
behind. These side effects include writing to an external table, sending email, forking
sessions out of PL/SQL or Java, transferring files, accessing external URLs, and so
on. For example, in case of PL/SQL messaging, suppose, you walk away in-between
some work without committing and the session times out. Now, if you issue a Ctrl+C
command, then the foreground of a component fails. When you resubmit the work,
then this side effect can also be repeated.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for
more information about potential side effects of Application Continuity

You must make a conscious decision about whether to enable replay for external
actions or not. For example, you can consider the following situations where this
decision is important:

• Using the UTL_HTTP package to issue a SOA call

• Using the UTL_SMTP package to send a message

• Using the UTL_URL package to access a web site

Use the disableReplay API if you do not want such external actions to be replayed.

29.11.2.2 Application Synchronizes Independent Sessions
You can configure an application for replay if the application synchronizes independent
sessions using volatile entities that are held until commit, rollback, or session loss. In

Chapter 29
About Disabling Replay in Application Continuity for Java

29-21

this case, the application synchronizes multiple sessions connected to several data
sources that are otherwise inter-dependent using resources such as a database lock.
This synchronization may be fine if the application is only serializing these sessions
and understands that any session may fail. However, if the application assumes that a
lock or any other volatile resource held by one data source implies exclusive access to
data on the same or a separate data source from other connections, then this
assumption may be invalidated when replaying.

During replay, the driver is not aware that the sessions are dependent on one session
holding a lock or other volatile resource. You can also use pipes, buffered queues,
stored procedures taking a resource (such as a semaphore, device, or socket) to
implement the synchronization that are lost by failures.

Note:

The DBMS_LOCK does not replay in the restricted version.

29.11.2.3 Application Uses Time at the Middle-tier in the Execution Logic
In this case, the application uses the wall clock at the middle-tier as part of the
execution logic. The JDBC replay driver does not repeat the middle-tier time logic, but
uses the database calls that execute as part of this logic. For example, an application
using middle-tier time may assume that a statement executed at Time T1 is not
reexecuted at Time T2, unless the application explicitly does so.

29.11.2.4 Application assumes that ROWIds do not change
If an application caches ROWIDs, then access to these ROWIDs may be invalidated
due to database changes. Although a ROWID uniquely identifies a row in a table, a
ROWID may change its value in the following situations:

• The underlying table is reorganized

• An index is created on the table

• The underlying table is partitioned

• The underlying table is migrated

• The underlying table is exported and imported using EXP/IMP/DUL

• The underlying table is rebuilt using Golden Gate or Logical Standby or other
replication technology

• The database of the underlying table is flashed back or restored

It is bad practice for an application to store ROWIDs for later use as the corresponding
row may either not exist or contain completely different data.

29.11.2.5 Application Assumes that Side Effects Execute Once
In this case, the following are replayed during a replay:

• Autonomous transactions

• Opening of back channels separate to the main transaction side effects

Chapter 29
About Disabling Replay in Application Continuity for Java

29-22

Examples of back channels separate to the main transaction include writing to an
external table, sending email, forking sessions out of PL/SQL or Java, writing to output
files, transferring files, and writing exception files. Any of these actions leave persistent
side effects in the absence of replay. Back channels can leave persistent results
behind. For example, if a user leaves a transaction midway without committing and the
session times out, then the user presses Ctrl+C, the foreground or any component
fails. If the user resubmits work, then the side effects can be repeated.

29.11.2.6 Application Assumes that Location Values Do not Change
SYSCONTEXT options comprise a location-independent set such as National Language
Support (NLS) settings, ISDBA, CLIENT_IDENTIFIER, MODULE, and ACTION, and a
location-dependent set that uses physical locators. Typically, an application does not
use the physical identifier, except in testing environments. If physical locators are used
in mainline code, then the replay finds the mismatch and rejects it. However, it is fine
to use physical locators in callbacks.

Example

select
 sys_context('USERENV','DB_NAME')
 ,sys_context('USERENV','HOST')
 ,sys_context('USERENV','INSTANCE')
 ,sys_context('USERENV','IP_ADDRESS')
 ,sys_context('USERENV','ISDBA')
 ,sys_context('USERENV','SESSIONID')
 ,sys_context('USERENV','TERMINAL')
 ,sys_context('USERENV',ID')
from dual

29.11.3 Diagnostics and Tracing
The JDBC Replay driver supports standard JDK logging. Logging is enabled using the
Java command-line -Djava.util.logging.config.file=<file> option. Log level is
controlled with the oracle.jdbc.internal.replay.level attribute in the log
configuration file. For example:

oracle.jdbc.internal.replay.level = FINER|FINEST

where, FINER produces external APIs and FINEST produces large volumes of trace.
You must use FINEST only under supervision.

If you use the java.util.logging.XMLFormatter class to format a log record, then the
logs are more readable but larger. If you are using replay with FAN enabled on UCP or
WebLogic Server, then you should also enable FAN-processing logging.

See Also:

Oracle Universal Connection Pool for JDBC Developer's Guide

29.11.3.1 Writing Replay Trace to Console
Following is the example of a configuration file for logging configuration.

Chapter 29
About Disabling Replay in Application Continuity for Java

29-23

oracle.jdbc.internal.replay.level = FINER
handlers = java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level = ALL
java.util.logging.ConsoleHandler.formatter = java.util.logging.XMLFormatter

29.11.3.2 Writing Replay Trace to a File
Following is the example of a properties file for logging configuration.

oracle.jdbc.internal.replay.level = FINEST

Output File Format (size, number and style)
count: Number of output files to cycle through, by appending an integer to the
base file name:
limit: Limiting size of output file in bytes
handlers = java.util.logging.FileHandler
java.util.logging.FileHandler.pattern = [file location]/replay_%U.trc
java.util.logging.FileHandler.limit = 500000000
java.util.logging.FileHandler.count = 1000
java.util.logging.FileHandler.formatter = java.util.logging.XMLFormatter

Chapter 29
About Disabling Replay in Application Continuity for Java

29-24

30
Oracle JDBC Support for FAN Events

Starting from Oracle Database 12c Release 2 (12.2.0.1), Oracle JDBC driver supports
Oracle RAC Fast Application Notification (FAN) events, for planned and unplanned
outages. This facilitates third-party connection pools to leverage Oracle RAC features
for high availability. Java applications not using Oracle Universal Connection Pool
(UCP) or WebLogic Server can now leverage on this support. For example, scenarios
like rolling upgrades at the Oracle RAC server-side do not cause JDBC errors within
applications.

Note:

Although the Oracle JDBC drivers now support the FAN events, Oracle UCP
provides more comprehensive support for all FAN events.

See Also:

Oracle Universal Connection Pool Developer’s Guide

• Overview of Oracle JDBC Support for FAN events

• Safe Draining APIs for Planned Maintenance

• Installation and Configuration of Oracle JDBC Driver for FAN Events Support

30.1 Overview of Oracle JDBC Support for FAN events
You must use an Oracle RAC Database or an Oracle Restart on a single instance
database to use this feature. This feature supports:

• Planned maintenance

This case deals with planned maintenance on Oracle RAC servers, where an
Oracle RAC service can be gracefully shutdown. In this case, borrowed or in-use
connections from a connection pool are not interrupted, and are closed only until
any safe-draining API is invoked. For example, when an application completes
work on such a connection and returns it to the connection pool.

• Unplanned outages

In this case, dead connections are rapidly detected and aborted, which severs
network connections to prevent hangs. In this case, borrowed and in-use
connections are interrupted during unplanned outages. Applications are expected
to handle any exception on affected connections and perform necessary recovery,
either on their own, or using Oracle high-availability solutions such as Application
Continuity.

30-1

Related Topics

• Application Continuity for Java

Related Topics

• Safe Draining APIs for Planned Maintenance

See Also:

Oracle Real Application Clusters Administration and Deployment Guidefor
server-side configuration about using Oracle RAC. This chapter describes
only the client-side configuration steps that an application must perform
when using Oracle JDBC driver support for FAN events.

30.2 Safe Draining APIs for Planned Maintenance
For planned Oracle RAC maintenance, the JDBC driver supports a list of safe-draining
APIs, which are required for additional handshake or integration work with a third-party
Java connection pool. These APIs serve as the draining-points, where the driver can
safely close any connection affected by a planned maintenance, without causing
application-visible errors. Following is the list of safe-draining APIs that driver FAN
supports:

• java.sql.Connection.isValid(int timeout)

• oracle.jdbc.OracleConnection.pingDatabase()

• oracle.jdbc.OracleConnection.pingDatabase(int timeout)

• oracle.jdbc.OracleConnection.endRequest()

• All standard JDBC and Oracle JDBC extension EXECUTE*** calls on Statement,
PreparedStatement, and CallableStatement interfaces

For the standard JDBC and Oracle JDBC extension EXECUTE*** calls, the executed
SQL command string must contain the following SQL hint as the first noncomment
token within the SQL string:

/*+ CLIENT_CONNECTION_VALIDATION */

Qualified SQLs are treated as connection-validation SQLs. For example:

/*+ CLIENT_CONNECTION_VALIDATION */ SELECT 1 FROM DUAL

Typically, a third-party connection pool places calls to these APIs. It is expected that
on detection of any bad connection with such invocations, a third-party connection
pool closes and removes the related connection from the pool, so that no errors are
visible to applications. When the application itself calls these APIs, then it is expected
that application is actively validating the underlying connection and will close and
remove any bad connection detected.

Chapter 30
Safe Draining APIs for Planned Maintenance

30-2

30.3 Installation and Configuration of Oracle JDBC Driver for
FAN Events Support

Oracle JDBC driver automatically determines whether to enable Oracle JDBC support
for FAN events, by checking the database server that it connects to, and whether the
following necessary JAR files are available in the application environment, in addition
to the Oracle JDBC driver or not:

• The simplefan.jar and ons.jar files

You must install the 12.2.0.1 version of the simplefan.jar and ons.jar files from
the following link and include them in the CLASSPATH.

http://www.oracle.com/technetwork/database/application-development/jdbc/jdbc-
ucp-122-3110062.html

If either one is missing, or the driver is unable to load it, then this feature is
disabled. When used with a third-party connection pool, these JAR files must be
placed in the same location, where the connection pool retrieves and loads the
driver JAR files.

• Oracle JDBC data sources

You can use the same typical Oracle JDBC data sources, such as
oracle.jdbc.pool.OracleDataSource or oracle.jdbc.OracleDriver for
obtaining JDBC connections. When used together with a third-party connection
pool, your application must specify these classes as connection factories for the
connection pool.

Applications that want to explicitly disable this feature, can set the
oracle.jdbc.fanEnabled property to FALSE. This property is available as both a
system property and a connection property. For applications using Universal
Connection Pool (UCP) or WebLogic Server Active GridLink (AGL), this property is set
to FALSE by default. Otherwise, the default value is TRUE.

Note:

• When the JDBC driver automatically enables support for FAN events,
with both the simplefan.jar and the ons.jar files present on the
CLASSPATH, then calling the getConnection method may throw an
exception, such as, java.lang.IllegalArgumentException. To avoid
this, you can perform either of the following:

– Remove either simplefan.jar or ons.jar from the CLASSPATH.

– Set the oracle.jdbc.fanEnabled property to FALSE to disable this
feature explicitly.

• Setting the oracle.jdbc.fanEnabled property to TRUE may not enable
Oracle JDBC Support for FAN Events feature as the feature depends on
other factors too.

Chapter 30
Installation and Configuration of Oracle JDBC Driver for FAN Events Support

30-3

http://www.oracle.com/technetwork/database/application-development/jdbc/jdbc-ucp-122-3110062.html
http://www.oracle.com/technetwork/database/application-development/jdbc/jdbc-ucp-122-3110062.html

The JDBC driver requires minimal configuration changes or code changes to a third-
party connection pool for supporting Oracle FAN events. For a connection pool that
does not need any configuration change or code change, it is assumed that it fulfils
one of the following criteria:

• The pool has a configuration option for validating JDBC connections at pool
checkout time.

• The pool uses javax.sql.PooledConnection and has a configuration option for
plugging in a javax.sql.ConnectionPoolDataSource implementation. Such a
connection pool is also assumed to be able to check for closed or bad physical
connections at connection returns.

Following are a few connection validation options on some third-party Java connection
pools. The majority of these options are based on SQL, and not on validation APIs:

Java Connection Pool Connection Validation Options

Oracle WebLogic Generic and MDS data
sources

TestConnectionsOnReserve,
TestConnectionsOnRelease,
TestConnectionsOnCreate

IBM WebSphere PreTest Connection

RedHat JBoss check-valid-connection-sql

Apache TomCat TestonBorrow, TestonRelease

When you use Oracle JDBC support for FAN events feature with an Oracle RAC
server Release 11g, then applications must explicitly set the remote ONS configuration
string for Oracle RAC FAN through the oracle.jdbc.fanONSConfig system property.
The value and the format of the property are the same as for UCP Fast Connection
Failover (FCF).

See Also:

Universal Connection Pool Developer’s Guide

30.4 Example of Oracle JDBC Driver FAN support for
Planned Maintenance

The following example illustrates how you can typically enable and use JDBC Oracle
FAN support with planned maintenance on Oracle RAC. Applications should not
receive any exception during a planned maintenance after following these instructions:

1. Upgrade Oracle JDBC driver to Release 12.2.0.1 to use the ojdbc8.jar file.

2. Install and use the 12.2.0.1 version of the ons.jar and simplefan.jar files.

3. Use the oracle.jdbc.pool.OracleDataSource class to obtain physical
connections or configure this class as the connection factory on a third-party Java
connection pool. In the latter case, you must set the specific pool property that
enables connection validation.

Chapter 30
Example of Oracle JDBC Driver FAN support for Planned Maintenance

30-4

Optionally, when running against Oracle RAC Release 11g, specify the system
property oracle.jdbc.fanONSConfig to configure remote ONS.

4. The application runs until you are ready to perform planned maintenance activities
like a rolling upgrade on the Oracle RAC. During the planned maintenance, for
each service based on usage patterns, a DBA will perform the following activities
using the extended 12.2 srvctl interface:

• Relocate or stop the services on the next instance to upgrade, with no –f
(force)

• Wait until all connections to this service are drained by driver FAN

• When the timeout is reached, disconnect the sessions with the defined stop
mode (transactional is recommended)

• When all services are relocated or stopped, shutdown the instance and apply
the upgrade or patch

• Restart the instance and restart the services if they were stopped

• Iterate until all instances are upgraded/patched

Chapter 30
Example of Oracle JDBC Driver FAN support for Planned Maintenance

30-5

31
Transparent Application Failover

This chapter contains the following sections:

• Overview of Transparent Application Failover

• Failover Type Events

• TAF Callbacks

• Java TAF Callback Interface

• Comparison of TAF and Fast Connection Failover

31.1 Overview of Transparent Application Failover
Transparent Application Failover (TAF) is a feature of the Java Database Connectivity
(JDBC) Oracle Call Interface (OCI) driver. It enables the application to automatically
reconnect to a database, if the database instance to which the connection is made
fails. In this case, the active transactions roll back.

When an instance to which a connection is established fails or is shut down, the
connection on the client-side becomes stale and would throw exceptions to the caller
trying to use it. TAF enables the application to transparently reconnect to a
preconfigured secondary instance, creating a fresh connection, but identical to the
connection that was established on the first original instance. That is, the connection
properties are the same as that of the earlier connection. This is true regardless of
how the connection was lost.

Note:

• TAF is always active and does not have to be set.

• TAF is not supported with LOB and XML types.

31.2 Failover Type Events
The following are possible failover events in the OracleOCIFailover interface:

• FO_SESSION

Is equivalent to FAILOVER_MODE=SESSION in the tnsnames.ora file CONNECT_DATA
flags. This means that only the user session is authenticated again on the server
side, while open cursors in the OCI application need to be reprocessed.

• FO_SELECT

Is equivalent to FAILOVER_MODE=SELECT in tnsnames.ora file CONNECT_DATA flags.
This means that not only the user session is re-authenticated on the server side,

31-1

but open cursors in the OCI can continue fetching. This implies that the client-side
logic maintains fetch-state of each open cursor.

• FO_NONE

Is equivalent to FAILOVER_MODE=NONE in the tnsnames.ora file CONNECT_DATA flags.
This is the default, in which no failover functionality is used. This can also be
explicitly specified to prevent failover from happening. Additionally,
FO_TYPE_UNKNOWN implies that a bad failover type was returned from the OCI
driver.

• FO_BEGIN

Indicates that failover has detected a lost connection and failover is starting.

• FO_END

Indicates successful completion of failover.

• FO_ABORT

Indicates that failover was unsuccessful and there is no option of retrying.

• FO_REAUTH

Indicates that a user handle has been re-authenticated.

• FO_ERROR

Indicates that failover was temporarily unsuccessful, but it gives the application the
opportunity to handle the error and retry failover. The usual method of error
handling is to issue the sleep method and retry by returning the value FO_RETRY.

• FO_RETRY

Indicates that the application should retry failover.

• FO_EVENT_UNKNOWN

Indicates a bad failover event.

31.3 TAF Callbacks
TAF callbacks are used in the event of the failure of one database connection, and
failover to another database connection. TAF callbacks are callbacks that are
registered in case of failover. The callback is called during the failover to notify the
JDBC application of events generated. The application also has some control of
failover.

Note:

The callback setting is optional.

31.4 Java TAF Callback Interface
The OracleOCIFailover interface includes the callbackFn method, supporting the
following types and events:

Chapter 31
TAF Callbacks

31-2

public interface OracleOCIFailover{

// Possible Failover Types
public static final int FO_SESSION = 1;
public static final int FO_SELECT = 2;
public static final int FO_NONE = 3;
public static final int;

// Possible Failover events registered with callback
public static final int FO_BEGIN = 1;
public static final int FO_END = 2;
public static final int FO_ABORT = 3;
public static final int FO_REAUTH = 4;
public static final int FO_ERROR = 5;
public static final int FO_RETRY = 6;
public static final int FO_EVENT_UNKNOWN = 7;

public int callbackFn (Connection conn,
 Object ctxt, // ANy thing the user wants to save
 int type, // One of the possible Failover Types
 int event); // One of the possible Failover Events

Handling the FO_ERROR Event

In case of an error while failing over to a new connection, the JDBC application is able
to retry failover. Typically, the application sleeps for a while and then it retries, either
indefinitely or for a limited amount of time, by having the callback return FO_RETRY.

Handling the FO_ABORT Event

Callback registered should return the FO_ABORT event if the FO_ERROR event is passed
to it.

31.5 Comparison of TAF and Fast Connection Failover
Transparent Application Failover (TAF) differs from Fast Connection Failover in the
following ways:

• Application-level connection retries

TAF supports connection retries only at the OCI/Net layer. Fast Connection
Failover supports application-level connection retries. This gives the application
control of responding to connection failovers. The application can choose whether
to retry the connection or to rethrow the exception.

• Integration with the Universal Connection Pool

TAF works at the network level on a per-connection basis, which means that the
connection cache cannot be notified of failures. Fast Connection Failover is well-
integrated with the Universal Connection Pool, which enables the Connection
Cache Manager to manage the cache for high availability. For example, failed
connections are automatically invalidated in the cache.

• Event-based

Fast Connection Failover is based on the Oracle RAC event mechanism. This
means that Fast Connection Failover is efficient and detects failures quickly for
both active and inactive connections.

• Load-balancing support

Chapter 31
Comparison of TAF and Fast Connection Failover

31-3

Fast Connection Failover supports UP event load balancing of connections and
run-time work request distribution across active Oracle RAC instances.

See Also:

Oracle Universal Connection Pool for JDBC Developer's Guide

Note:

Oracle recommends not to use TAF and Fast Connection Failover in the
same application.

Chapter 31
Comparison of TAF and Fast Connection Failover

31-4

32
Single Client Access Name

Single Client Access Name (SCAN) is an Oracle Real Application Clusters (Oracle
RAC) feature that provides a single name for clients to access Oracle Databases
running in a cluster. This chapter discusses the following concepts related to the
SCAN:

• Overview of Single Client Access Name

• About Configuring the Database Using the SCAN

• Using the SCAN in a Maximum Availability Architecture Environment

• Using the SCAN With Oracle Connection Manager

32.1 Overview of Single Client Access Name
The SCAN is a domain name registered to at least one and up to three IP addresses,
either in Domain Naming Service (DNS) or Grid Naming Service (GNS). When you
use GNS and Dynamic Host Configuration Protocol (DHCP), Oracle Clusterware
configures the Virtual IP (VIP) addresses for the SCAN name that is provided during
cluster configuration. The node VIP and the three SCAN VIPs are obtained from the
DHCP server when you use GNS.

See Also:

Oracle Clusterware Administration and Deployment Guide for more
information about GNS

If a new server joins the cluster, then Oracle Clusterware dynamically obtains the
required VIP address from the DHCP server, updates the cluster resource, and makes
the server accessible through GNS. The benefit of using the SCAN is that the
connection information of the client does not need to change if you add or remove
nodes in the cluster. Having a single name to access the cluster enables the client to
use the EZConnect client and the simple JDBC thin URL to access any Database
running in the cluster, independent of the active servers in the cluster. The SCAN
provides load balancing and failover for client connections to the Database. The SCAN
works as a cluster alias for Databases in the cluster.

32.2 About Configuring the Database Using the SCAN
The SCAN is an essential part of Database configuration. So, by default, the
REMOTE_LISTENER parameter is set to the SCAN, assuming that the Database is
created using standard Oracle tools. This enables the instances to register with the
SCAN Listeners as remote listeners to provide information on what services are being
provided by the instance, the current load, and a recommendation on how many
incoming connections should be directed to the instance.

32-1

In this context, you must set the LOCAL_LISTENER parameter to the node-VIP. If you
need fully qualified domain names, then ensure that the LOCAL_LISTENER parameter is
set to the fully qualified domain name. By default, a node listener is created on each
node in the cluster during cluster configuration. With Oracle Grid Infrastructure, the
node listener runs out of the Oracle Grid Infrastructure home and listens on the node-
VIP using the specified port. The default port is 1521.

Unlike in earlier Database versions, Oracle does not recommend to set your
REMOTE_LISTENER parameter to a server side TNSNAMES alias that resolves the host to
the SCAN in the address list entry, for example, HOST=sales1-scan. Instead, you must
use the simplified SCAN:port syntax as shown in the following table that shows typical
setting for a LOCAL_LISTENER and REMOTE_LISTENER:

Name Type Value

LOCAL_LISTENER string (DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(
PROTOCOL=TCP)(HOST=localhost)
(PORT=5221))))

REMOTE_LISTENER string example.us.oracle.com:5221

Note:

If you are using the easy connect naming method, you may need to modify
the SQLNET.ORA file to ensure that EZCONNECT is in the list when you specify
the order of the naming methods used for the client name resolution lookups.

32.3 How Connection Load Balancing Works Using the
SCAN

For clients connecting using Oracle SQL*Net, three IP addresses are received by the
client by resolving the SCAN name through DNS. The client then goes through the list
that it receives from the DNS and tries connecting through one of the IP addresses in
the list. If the client receives an error, then it tries connecting to the other addresses
before returning an error to the user or application. This is similar to how client
connection failover works in earlier Database releases, when an address list is
provided in the client connection string.

When a SCAN Listener receives a connection request, the SCAN Listener checks for
the least loaded instance providing the requested service. It then re-directs the
connection request to the local listener on the node where the least loaded instance is
running. Subsequently, the client is given the address of the local listener. The local
listener then finally creates the connection to the Database instance.

Chapter 32
How Connection Load Balancing Works Using the SCAN

32-2

Figure 32-1 Connection Load Balancing Using the SCAN

Example

This example assumes an Oracle client using a default TNSNAMES.ora file:

ORCLservice =(DESCRIPTION =(ADDRESS = (PROTOCOL = TCP)(HOST = sales1-
scan.example.com)(PORT = 1521))(CONNECT_DATA =(SERVER = DEDICATED)(SERVICE_NAME =
MyORCLservice)))

32.4 Version and Backward Compatibility
To successfully use the SCAN to connect to an Oracle RAC Database in the cluster
depends on the following two factors:

• Ability of the client to understand and use the SCAN

Chapter 32
Version and Backward Compatibility

32-3

• The correct configuration of the REMOTE_LISTENER parameter setting in the
Database

If the version of the Oracle Client connecting to the Database and the Oracle
Database version used are both Oracle Database 11g Release 2, and the default
configuration is used as described in the preceding sections, then typically you do not
need to make any change to the system.

If both the Oracle Client version and the version of the Oracle Database that the client
is connecting to are earlier than Oracle Database 11g Release 2, then typically you do
not need to make any change to the system. In this case, the client uses a TNS
connect descriptor that resolves to the node-VIPs of the cluster, while Oracle
Database uses a REMOTE_LISTENER entry pointing to the node-VIPs. The disadvantage
of this configuration is that the SCAN is not used and therefore every time the cluster
changes in the back end, the clients are exposed to changes.

If you are using Oracle Database 11g Release 2, but the clients are on an earlier
version of the Database, then you must change the Oracle client, or the Oracle
Database REMOTE_LISTENER parameter settings, or both accordingly. You must
consider the following cases in such a scenario:

Table 32-1 Oracle Client and Oracle Database Version Compatibility for the
SCAN

Oracle Client Version Oracle Database Version Comment

Oracle Database 11g Release
2

Oracle Database 11g Release
2

No change is required

Oracle Database 11g Release
2

Oracle Database Version
earlier than Oracle Database
11g Release 2

Add the SCAN VIPs as hosts
to the REMOTE_LISTENER
parameter.

Oracle Database Version
earlier than Oracle Database
11g Release 2

Oracle Database 11g Release
2

Update the client
TNSNAMES.ora file to include
the SCAN VIPs. If the
Database is upgraded using
the Database Upgrade
Assistant (DBUA) from a
Database earlier than 11g
Release 2, then the DBUA
configures the
REMOTE_LISTENER parameter
to point to the node-VIPs and
the SCAN.

Oracle Database Version
earlier than Oracle Database
11g Release 2

Oracle Database Version
earlier than Oracle Database
11g Release 2

If you want to make use of the
SCAN (recommended), then
add the SCAN VIPs as hosts
to the REMOTE_LISTENER
parameter and update the
client TNSNAMES.ora file to
include the SCAN VIPs.
Otherwise, no change
required.

If you are using a client earlier than Oracle Database 11g Release 2, then you cannot
fully benefit from the advantages of the SCAN because the Oracle Client cannot
handle a set of three IP addresses returned by the DNS for the SCAN. Instead, it tries
to connect to only the first address returned in the list and ignores the other two

Chapter 32
Version and Backward Compatibility

32-4

addresses. If the SCAN Listener listening on this specific IP address is not available or
the IP address itself is not available, then the connection fails. To ensure load
balancing and connection failover with clients earlier than Oracle Database 11g
Release 2, you must update the TNSNAMES.ora file of the client, so that it uses three
address lines, where each address line resolves to one of the SCAN VIPs. The
following example shows a sample TNSNAMES.ora file for a client earlier than Oracle
Database 11g Release 2:

sales.example.com =(DESCRIPTION=
(ADDRESS_LIST= (LOAD_BALANCE=on)(FAILOVER=ON)
(ADDRESS=(PROTOCOL=tcp)(HOST=133.22.67.192)(PORT=1521))
(ADDRESS=(PROTOCOL=tcp)(HOST=133.22.67.193)(PORT=1521))
(ADDRESS=(PROTOCOL=tcp)(HOST=133.22.67.194)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME= salesservice.example.com)))

32.5 Using the SCAN in a Maximum Availability Architecture
Environment

If you have a Maximum Availability Architecture (MAA) environment implemented, in
which you use Oracle RAC for both your primary and standby Databases that are
synchronized using Oracle Data Guard, then using the SCAN provides a simplified
TNSNAMES configuration that a client can use to connect to the Database, independent
of whether the primary or standby Database is the currently active Database.

To use this simplified configuration, Oracle Database 11g Release 2 introduced the
following two SQL*Net parameters that can be used for connection strings of individual
clients:

• The CONNECT_TIMEOUT parameter

It specifies the timeout duration in seconds for a client to establish an Oracle Net
connection to an Oracle Database. This parameter overrides the
SQLNET.OUTBOUT_CONNECT_TIMEOUT parameter in the SQLNET.ORA file.

• The RETRY_COUNT parameter

It specifies the number of times an ADDRESS_LIST is traversed before the
connection attempt is terminated.

Using these two parameters, both the SCANs, the one on the primary site and the one
on the standby site, can be used in the client connection strings. Also, if the randomly
selected address points to the site that is not currently active, then the timeout enables
the connection request to failover before the client waits for an unreasonably long
time. The following example shows a sample TNSNAMES.ORA entry for a MAA
environment:

sales.example.com =(DESCRIPTION= (CONNECT_TIMEOUT=10)(RETRY_COUNT=3)
(ADDRESS_LIST= (LOAD_BALANCE=on)(FAILOVER=ON)
(ADDRESS=(PROTOCOL=tcp)(HOST=sales1-scan)(PORT=1521))
(ADDRESS=(PROTOCOL=tcp)(HOST=sales2-scan)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME= salesservice.example.com)))

32.6 Using the SCAN With Oracle Connection Manager
If you use Oracle Connection Manager (CMAN) with your Oracle RAC Database, then
the REMOTE_LISTENER parameter for the Oracle RAC instances must include the CMAN
server, so that the CMAN server receives load balancing related information and can

Chapter 32
Using the SCAN in a Maximum Availability Architecture Environment

32-5

load balance connections across the available instances. The easiest way to achieve
this is to add the CMAN server as an entry to the REMOTE_LISTENER parameter of the
Databases that clients want to connect to through CMAN. You must also remove the
SCAN from the TNSNAMES connect descriptor of the clients and configure the CMAN
server. The following example shows a server-side TNSNAMES.ora example entry when
you use CMAN:

SQL> show parameters listener
NAME TYPE VALUE
-------------------------- ----------- ------------------------------
listener_networks string
local_listener string (DESCRIPTION=(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)
 (HOST=148.87.58.109)(PORT=1521))))
remote_listener string stscan3.oracle.com:1521,(DESCRIPTION=
 (ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)
 (HOST=CMANserver)(PORT=1521))))

See Also:

Oracle Database Net Services Reference for more information about
configuring the CMAN server

Chapter 32
Using the SCAN With Oracle Connection Manager

32-6

Part VII
Transaction Management

This part provides information about transaction management in Oracle Java
Database Connectivity (JDBC). It includes a chapter that discusses the Oracle JDBC
implementation of distributed transactions.

Part VII contains the following chapter:

• Distributed Transactions

33
Distributed Transactions

This chapter discusses the Oracle Java Database Connectivity (JDBC) implementation
of distributed transactions. These are multiphased transactions, often using multiple
databases, which must be committed in a coordinated way. There is also related
discussion of XA, which is a general standard, and not specific to Java, for distributed
transactions.

The following topics are discussed:

• AboutDistributed Transactions

• XA Components

• Error Handling and Optimizations

• About Implementing a Distributed Transaction

• Native-XA in Oracle JDBC Drivers

Note:

This chapter discusses features of the JDBC 2.0 Optional Package, formerly
known as the JDBC 2.0 Standard Extension application programming
interface (API) that is available through the javax packages.

For further introductory and general information about distributed transactions, refer to
the specifications for the JDBC 2.0 Optional Package and the Java Transaction API
(JTA).

33.1 About Distributed Transactions
The section covers the following topics:

• Overview of Distributed Transaction

• Distributed Transaction Components and Scenarios

• Distributed Transaction Concepts

• About Switching Between Global and Local Transactions

• Oracle XA Packages

33.1.1 Overview of Distributed Transaction
A distributed transaction, sometimes referred to as a global transaction, is a set of
two or more related transactions that must be managed in a coordinated way. The
transactions that constitute a distributed transaction might be in the same database,
but more typically are in different databases and often in different locations. Each

33-1

individual transaction of a distributed transaction is referred to as a transaction
branch.

For example, a distributed transaction might consist of money being transferred from
an account in one bank to an account in another bank. You would not want either
transaction committed without assurance that both will complete successfully.

In JDBC, distributed transaction functionality is built on top of connection pooling
functionality. This distributed transaction functionality is also built upon the open XA
standard for distributed transactions. XA is part of the X/Open standard and is not
specific to Java.

JDBC is used to connect to database resources. However, to include all changes to
multiple databases within a transaction, you must use the JDBC connections within a
JTA global transaction. The process of including database SQL updates within a
transaction is referred to as enlisting a database resource.

33.1.2 Distributed Transaction Components and Scenarios
In reading the remainder of the distributed transactions section, it will be helpful to
keep the following points in mind:

• A distributed transaction system typically relies on an external transaction
manager, such as a software component that implements standard JTA
functionality, to coordinate the individual transactions.

Many vendors offer XA-compliant JTA modules, including Oracle, which includes
JTA in Oracle9i Application Server and Oracle Application Server 10g.

• XA functionality is usually isolated from a client application, being implemented
instead in a middle-tier environment, such as an application server.

In many scenarios, the application server and transaction manager will be together
on the middle tier, possibly together with some of the application code as well.

• Discussion throughout this section is intended mostly for middle-tier developers.

• The term resource manager is often used in discussing distributed transactions. A
resource manager is simply an entity that manages data or some other kind of
resource. Wherever the term is used in this chapter, it refers to a database.

Note:

Using JTA functionality requires jta.jar to be in the CLASSPATH
environment variable. This file is located at ORACLE_HOME/jlib. Oracle
includes this file with the JDBC product.

33.1.3 Distributed Transaction Concepts
When you use XA functionality, the transaction manager uses XA resource instances
to prepare and coordinate each transaction branch and then to commit or roll back all
transaction branches appropriately.

XA functionality includes the following key components:

• XA data sources

Chapter 33
About Distributed Transactions

33-2

These are extensions of connection pool data sources and other data sources,
and similar in concept and functionality.

There will be one XA data source instance for each resource manager that will be
used in the distributed transaction. You will typically create XA data source
instances in your middle-tier software.

XA data sources produce XA connections.

• XA connections

These are extensions of pooled connections and similar in concept and
functionality. An XA connection encapsulates a physical database connection.
Individual connection instances are temporary handles to these physical
connections.

An XA connection instance corresponds to a single Oracle session, although the
session can be used in sequence by multiple logical connection instances, as with
pooled connection instances.

You will typically get an XA connection instance from an XA data source instance
in your middle-tier software. You can get multiple XA connection instances from a
single XA data source instance if the distributed transaction will involve multiple
sessions in the same database.

XA connections produce OracleXAResource instances and JDBC connection
instances.

• XA resources

These are used by a transaction manager in coordinating the transaction branches
of a distributed transaction.

You will get one OracleXAResource instance from each XA connection instance,
typically in your middle-tier software. There is a one-to-one correlation between
OracleXAResource instances and XA connection instances. Equivalently, there is a
one-to-one correlation between OracleXAResource instances and Oracle sessions.

In a typical scenario, the middle-tier component will hand off OracleXAResource
instances to the transaction manager, for use in coordinating distributed
transactions.

Each OracleXAResource instance corresponds to a single Oracle session. So,
there can be only a single active transaction branch associated with an
OracleXAResource instance at any given time. However, there can be additional
suspended transaction branches.

Each OracleXAResource instance has the functionality to start, end, prepare,
commit, or roll back the operations of the transaction branch running in the session
with which the OracleXAResource instance is associated.

The prepare step is the first step of a two-phase commit operation. The transaction
manager will issue a PREPARE to each OracleXAResource instance. Once the
transaction manager sees that the operations of each transaction branch have
prepared successfully, it will issue a COMMIT to each OracleXAResource instance to
commit all the changes.

• Transaction IDs

These are used to identify transaction branches. Each ID includes a transaction
branch ID component and a distributed transaction ID component. This is how a
branch is associated with a distributed transaction. All OracleXAResource

Chapter 33
About Distributed Transactions

33-3

instances associated with a given distributed transaction would have a transaction
ID that includes the same distributed transaction ID component.

• OracleXAResource.ORATRANSLOOSE

Start a loosely coupled transaction with transaction ID xid.

33.1.4 About Switching Between Global and Local Transactions
Applications can share connections between local and global transactions.
Applications can also switch connections between local transactions and global
transactions.

A connection is always in one of the following modes:

• NO_TXN

No transaction is actively using this connection.

• LOCAL_TXN

A local transaction with auto-commit turned off or disabled is actively using this
connection.

• GLOBAL_TXN

A global transaction is actively using this connection.

Each connection switches automatically between these modes depending on the
operations carried out on the connection. A connection is always in NO_TXN mode when
it is instantiated.

Note:

The modes are maintained internally by the JDBC drivers in association with
Oracle Database.

Table 33-1 describes the connection mode transition rules.

Table 33-1 Connection Mode Transitions

Current Mode Switches to NO_TXN
When

Switches to
LOCAL_TXN When

Switches to
GLOBAL_TXN When

NO_TXN NA Auto-commit mode is
false and an Oracle
data manipulation
language (DML)
statement is run.

The start method is
called on an
XAResource obtained
from the XAconnection
that provided the current
connection.

Chapter 33
About Distributed Transactions

33-4

Table 33-1 (Cont.) Connection Mode Transitions

Current Mode Switches to NO_TXN
When

Switches to
LOCAL_TXN When

Switches to
GLOBAL_TXN When

LOCAL_TXN Any of the following
happens:

• An Oracle data
definition language
(DDL) statement is
run.

• commit is called.
• rollback is called,

but without
parameters.

NA The start method is
called on an
XAResource obtained
from the XAconnection
that provided the current
connection. This feature
is available starting from
Oracle Database 12c
Release 1 (12.1.0.2).

GLOBAL_TXN Within a global
transaction open on this
connection, end is called
on an XAResource
obtained from the
XAconnection that
provided this
connection.

NEVER NA

If none of these rules is applicable, then the mode does not change.

Mode Restrictions on Operations

The current connection mode restricts which operations are valid within a transaction.

• In the LOCAL_TXN mode, applications must not call prepare, commit, rollback,
forget, or end on an XAResource. Doing so causes an XAException to be thrown.

• In the GLOBAL_TXN mode, applications must not call commit, rollback,
rollback(Savepoint), setAutoCommit(true), or setSavepoint on a
java.sql.Connection, and must not call OracleSetSavepoint or oracleRollback
on an oracle.jdbc.OracleConnection. Doing so causes a SQLException to be
thrown.

Note:

This mode-restriction error checking is in addition to the standard error
checking on the transaction and savepoint APIs.

33.1.5 Oracle XA Packages
Oracle supplies the following three packages that have classes to implement
distributed transaction functionality according to the XA standard:

• oracle.jdbc.xa

• oracle.jdbc.xa.client

• oracle.jdbc.xa.server

Chapter 33
About Distributed Transactions

33-5

Classes for XA data sources, XA connections, and XA resources are in both the
client package and the server package. An abstract class for each is in the top-level
package. The OracleXid and OracleXAException classes are in the top-level
oracle.jdbc.xa package, because their functionality does not depend on where the
code is running.

In middle-tier scenarios, you will import OracleXid, OracleXAException, and the
oracle.jdbc.xa.client package.

If you intend your XA code to run in the target Oracle Database, however, you will
import the oracle.jdbc.xa.server package instead of the client package.

If code that will run inside a target database must also access remote databases, then
do not import either package. Instead, you must fully qualify the names of any classes
that you use from the client package to access a remote database or from the
server package to access the local database. Class names are duplicated between
these packages.

33.2 XA Components
This section discusses the XA components, that is, the standard XA interfaces
specified in the JDBC standard, and the Oracle classes that implement them. The
following topics are covered:

• XADatasource Interface and Oracle Implementation

• XAConnection Interface and Oracle Implementation

• XAResource Interface and Oracle Implementation

• OracleXAResource Method Functionality and Input Parameters

• Xid Interface and Oracle Implementation

33.2.1 XADatasource Interface and Oracle Implementation
The javax.sql.XADataSource interface outlines standard functionality of XA data
sources, which are factories for XA connections. The overloaded getXAConnection
method returns an XA connection instance and optionally takes a user name and
password as input:

public interface XADataSource
{
 XAConnection getXAConnection() throws SQLException;
 XAConnection getXAConnection(String user, String password)
 throws SQLException;
 ...
}

Oracle JDBC implements the XADataSource interface with the OracleXADataSource
class, located both in the oracle.jdbc.xa.client package and the
oracle.jdbc.xa.server package.

The OracleXADataSource classes also extend the OracleConnectionPoolDataSource
class, which extends the OracleDataSource class, and therefore, include all the
connection properties.

Chapter 33
XA Components

33-6

The getXAConnection methods of the OracleXADataSource class returns the Oracle
implementation of XA connection instances, which are OracleXAConnection instances.

Note:

You can register XA data sources in Java Naming Directory and Interface
(JNDI) using the same naming conventions as discussed previously for
nonpooling data sources.

See Also:

For information about Fast Connection Failover, refer to Oracle Universal
Connection Pool for JDBC Developer's Guide.

33.2.2 XAConnection Interface and Oracle Implementation
An XA connection instance, as with a pooled connection instance, encapsulates a
physical connection to a database. This would be the database specified in the
connection properties of the XA data source instance that produced the XA connection
instance.

Each XA connection instance also has the facility to produce the OracleXAResource
instance that will correspond to it for use in coordinating the distributed transaction.

An XA connection instance is an instance of a class that implements the standard
javax.sql.XAConnection interface:

public interface XAConnection extends PooledConnection
{
 javax.jta.xa.XAResource getXAResource() throws SQLException;
}

As you see, the XAConnection interface extends the javax.sql.PooledConnection
interface, so it also includes the getConnection, close, addConnectionEventListener,
and removeConnectionEventListener methods.

Oracle JDBC implements the XAConnection interface with the OracleXAConnection
class, located both in the oracle.jdbc.xa.client package and the
oracle.jdbc.xa.server package.

The OracleXAConnection classes also extend the OraclePooledConnection class.

The OracleXAConnection class getXAResource method returns the Oracle
implementation of an OracleXAResource instance, which is an OracleXAResource
instance. The getConnection method returns an OracleConnection instance.

A JDBC connection instance returned by an XA connection instance acts as a
temporary handle to the physical connection, as opposed to encapsulating the
physical connection. The physical connection is encapsulated by the XA connection
instance. The connection obtained from an XAConnection object behaves exactly like a
regular connection, until it participates in a global transaction. At that time, auto-
commit status is set to false. After the global transaction ends, auto-commit status is

Chapter 33
XA Components

33-7

returned to the value it had before the global transaction. The default auto-commit
status on a connection obtained from XAConnection is false in all releases prior to
Oracle Database 10g. Starting from Oracle Database 10g, the default status is true.

Each time an XA connection instance getConnection method is called, it returns a
new connection instance that exhibits the default behavior, and closes any previous
connection instance that still exists and had been returned by the same XA connection
instance. However, it is advisable to explicitly close any previous connection instance
before opening a new one.

Calling the close method of an XA connection instance closes the physical connection
to the database. This is typically performed in the middle tier.

33.2.3 XAResource Interface and Oracle Implementation
The transaction manager uses OracleXAResource instances to coordinate all the
transaction branches that constitute a distributed transaction.

Each OracleXAResource instance provides the following key functionality, typically
invoked by the transaction manager:

• It associates and disassociates distributed transactions with the transaction branch
operating in the XA connection instance that produced this OracleXAResource
instance. Essentially, it associates distributed transactions with the physical
connection or session encapsulated by the XA connection instance. This is done
through use of transaction IDs.

• It performs the two-phase commit functionality of a distributed transaction to
ensure that changes are not committed in one transaction branch before there is
assurance that the changes will succeed in all transaction branches.

Note:

– Because there must always be a one-to-one correlation between XA
connection instances and OracleXAResource instances, an
OracleXAResource instance is implicitly closed when the associated
XA connection instance is closed.

– If a transaction is opened by a given OracleXAResource instance,
then it must also be closed by the same OracleXAResource instance.

An OracleXAResource instance is an instance of a class that implements the standard
javax.transaction.xa.XAResource interface. Oracle JDBC implements the
XAResource interface with the OracleXAResource class, located both in the
oracle.jdbc.xa.client package and the oracle.jdbc.xa.server package.

Oracle JDBC driver creates and returns an OracleXAResource instance whenever the
getXAResource method of the OracleXAConnection class is called, and it is Oracle
JDBC driver that associates an OracleXAResource instance with a connection instance
and the transaction branch being run through that connection.

This method is how an OracleXAResource instance is associated with a particular
connection and with the transaction branch being run in that connection.

Chapter 33
XA Components

33-8

33.2.4 OracleXAResource Method Functionality and Input Parameters
The OracleXAResource class has several methods to coordinate a transaction branch
with the distributed transaction with which it is associated. This functionality usually
involves two-phase commit operations.

A transaction manager, receiving OracleXAResource instances from a middle-tier
component, such as an application server, typically invokes this functionality.

Each of these methods takes a transaction ID as input, in the form of an Xid instance,
which includes a transaction branch ID component and a distributed transaction ID
component. Every transaction branch has a unique transaction ID, but transaction
branches belonging to the same global transaction have the same global transaction
component as part of their transaction IDs.

start

Starts work on behalf of a transaction branch, associating the transaction branch with
a distributed transaction.

void start(Xid xid, int flags)

The flags parameter must be one or more of the following values:

• XAResource.TMNOFLAGS

Flags the start of a new transaction branch for subsequent operations in the
session associated with this XA resource instance. This branch will have the
transaction ID xid, which is an OracleXid instance created by the transaction
manager. This will map the transaction branch to the appropriate distributed
transaction.

• XAResource.TMJOIN

Joins subsequent operations in the session associated with this XA resource
instance to the existing transaction branch specified by xid.

• XAResource.TMRESUME

Resumes the transaction branch specified by xid.

Note:

A transaction branch can be resumed only if it had been suspended
earlier.

• OracleXAResource.TMPROMOTE

Promotes a local transaction to a global transaction

• OracleXAResource.ORATMSERIALIZABLE

Starts a serializable transaction with transaction ID xid.

• OracleXAResource.ORATMREADONLY

Starts a read-only transaction with transaction ID xid.

• OracleXAResource.ORATMREADWRITE

Chapter 33
XA Components

33-9

Starts a read/write transaction with transaction ID xid.

• OracleXAResource.ORATRANSLOOSE

Starts a loosely coupled transaction with transaction ID xid.

TMNOFLAGS, TMJOIN, TMRESUME, TMPROMOTE, ORATMSERIALIZABLE, ORATMREADONLY, and
ORATMREADWRITE are defined as static members of the XAResource interface and
OracleXAResource class. ORATMSERIALIZABLE, ORATMREADONLY, and ORATMREADWRITE
are the isolation-mode flags. The default isolation behavior is READ COMMITTED.

Note:

• Instead of using the start method with TMRESUME, the transaction
manager can cast to OracleXAResource and use the resume(Xid xid)
method, an Oracle extension.

• If you use TMRESUME, then you must also use TMNOMIGRATE, as in
start(xid, XAResource.TMRESUME | OracleXAResource.TMNOMIGRATE).
This prevents the application from receiving the error ORA 1002: fetch
out of sequence.

• If you use the isolation-mode flags incorrectly, then an exception with
code XAER_INVAL is raised. Furthermore, you cannot use isolation-mode
flags when resuming a global transaction, because you cannot set the
isolation level of an existing transaction. If you try to use the isolation-
mode flags when resuming a transaction, then an external Oracle
exception with code ORA-24790 is raised.

• In order to avoid Error ORA 1002: fetch out of sequence, include the
TMNOMIGRATE flag as part of the start method. For example:

start(xid, XAResource.TMSUSPEND | OracleXAResource.TMNOMIGRATE);

• All the flags defined in OracleXAResource are Oracle extensions. When
writing a transaction manager that uses these flags, you should be
mindful of this.

Note that to create an appropriate transaction ID in starting a transaction branch, the
transaction manager must know to which distributed transaction the transaction branch
belongs. The mechanics of this are handled between the middle tier and transaction
manager.

end

Ends work on behalf of the transaction branch specified by xid, disassociating the
transaction branch from its distributed transaction.

void end(Xid xid, int flags)

The flags parameter can have one of the following values:

• XAResource.TMSUCCESS

This is to indicate that this transaction branch is known to have succeeded.

• XAResource.TMFAIL

Chapter 33
XA Components

33-10

This is to indicate that this transaction branch is known to have failed.

• XAResource.TMSUSPEND

This is to suspend the transaction branch specified by xid. By suspending
transaction branches, you can have multiple transaction branches in a single
session. Only one can be active at any given time, however. Also, this tends to be
more expensive in terms of resources than having two sessions.

TMSUCCESS, TMFAIL, and TMSUSPEND are defined as static members of the XAResource
interface and OracleXAResource class.

Note:

• Instead of using the end method with TMSUSPEND, the transaction
manager can cast to OracleXAResource and use the suspend(Xid xid)
method, an Oracle extension.

• This XA functionality to suspend a transaction provides a way to switch
between various transactions within a single JDBC connection. You can
use the XA classes to accomplish this, even if you are not in a distributed
transaction environment and would otherwise have no need for the XA
classes.

• If you use TMSUSPEND, then you must also use TMNOMIGRATE, as in
end(xid, XAResource.TMSUSPEND | OracleXAResource.TMNOMIGRATE).
This prevents the application from receiving the error ORA 1002: fetch
out of sequence.

• In order to avoid Error ORA 1002: fetch out of sequence, include the
TMNOMIGRATE flag as part of the end method. For example:

end(xid, XAResource.TMSUSPEND | OracleXAResource.TMNOMIGRATE);

• All the flags defined in OracleXAResource are Oracle extensions. Any
transaction manager that uses these flags should take heed of this.

prepare

Prepares the changes performed in the transaction branch specified by xid. This is the
first phase of a two-phase commit operation, to ensure that the database is accessible
and that the changes can be committed successfully.

int prepare(Xid xid)

This method returns an integer value as follows:

• XAResource.XA_RDONLY

This is returned if the transaction branch runs only read-only operations such as
SELECT statements.

• XAResource.XA_OK

This is returned if the transaction branch runs updates that are all prepared without
error.

XA_RDONLY and XA_OK are defined as static members of the XAResource interface and
OracleXAResource class.

Chapter 33
XA Components

33-11

Note:

• The prepare method sometimes does not return any value if the
transaction branch runs updates and any of them encounters errors
during preparation. In this case, an XA exception is thrown.

• Always call the end method on a branch before calling the prepare
method.

• If there is only one transaction branch in a distributed transaction, then
there is no need to call the prepare method. You can call the
OracleXAResource commit method without preparing first.

commit

Commits prepared changes in the transaction branch specified by xid. This is the
second phase of a two-phase commit and is performed only after all transaction
branches have been successfully prepared.

void commit(Xid xid, boolean onePhase)

Set the onePhase parameter as follows:

• true

This is to use one-phase instead of two-phase protocol in committing the
transaction branch. This is appropriate if there is only one transaction branch in
the distributed transaction; the prepare step would be skipped.

• false

This is to use two-phase protocol in committing the transaction branch.

rollback

Rolls back prepared changes in the transaction branch specified by xid.

void rollback(Xid xid)

forget

Tells the resource manager to forget about a heuristically completed transaction
branch.

public void forget(Xid xid)

recover

The transaction manager calls this method during recovery to obtain the list of
transaction branches that are currently in prepared or heuristically completed states.

public Xid[] recover(int flag)

Chapter 33
XA Components

33-12

Note:

Values for flag other than TMSTARTRSCAN, TMENDRSCAN, or TMNOFLAGS, cause
an exception to be thrown, otherwise flag is ignored.

The resource manager returns zero or more Xids for the transaction branches that are
currently in a prepared or heuristically completed state. If an error occurs during the
operation, then the resource manager throws the appropriate XAException.

Note:

The recover method requires SELECT privilege on
DBA_PENDING_TRANSACTIONS and EXECUTE privilege on SYS.DBMS_XA in
Oracle database server. For database versions prior to Oracle Database 11g
Release 1, where an Oracle patch including a fix for bug 5945463 is not
available, or it is infeasible to apply the patch for the particular application
scenario, the recover method requires SYSBDBA privilege. Regular use of
SYSDBA privilege is a security risk. So, Oracle strongly recommends that you
upgrade your Database or apply the fix for bug 5945463, if you need to use
the recover method.

isSameRM

To determine if two OracleXAResource instances correspond to the same resource
manager, call the isSameRM method from one OracleXAResource instance, specifying
the other OracleXAResource instance as input. In the following example, presume
xares1 and xares2 are OracleXAResource instances:

boolean sameRM = xares1.isSameRM(xares2);

33.2.5 Xid Interface and Oracle Implementation
The transaction manager creates transaction ID instances and uses them in
coordinating the branches of a distributed transaction. Each transaction branch is
assigned a unique transaction ID, which includes the following information:

• Format identifier

A format identifier specifies a Java transaction manager. For example, there could
be a format identifier orcl. This field cannot be null. The size of a format identifier
is 4 bytes.

• Global transaction identifier

It is also known as a distributed transaction ID component. The size of a global
transaction identifier is 64 bytes.

• Branch qualifier

It is also known as transaction branch ID component. The size of a branch qualifier
is 64 bytes.

Chapter 33
XA Components

33-13

The 64-byte global transaction identifier value will be identical in the transaction IDs of
all transaction branches belonging to the same distributed transaction. However, the
overall transaction ID is unique for every transaction branch.

An XA transaction ID instance is an instance of a class that implements the standard
javax.transaction.xa.Xid interface, which is a Java mapping of the X/Open
transaction identifier XID structure.

Oracle implements this interface with the OracleXid class in the oracle.jdbc.xa
package. OracleXid instances are employed only in a transaction manager,
transparent to application programs or an application server.

Note:

Oracle does not require the use of OracleXid for OracleXAResource calls.
Instead, use any class that implements the javax.transaction.xa.Xid
interface.

A transaction manager may use the following in creating an OracleXid instance:

public OracleXid(int fId, byte gId[], byte bId[]) throws XAException

fId is an integer value for the format identifier, gId[] is a byte array for the global
transaction identifier, and bId[] is a byte array for the branch qualifier.

The Xid interface specifies the following getter methods:

• public int getFormatId()

• public byte[] getGlobalTransactionId()

• public type[] getBranchQualifier()

33.3 Error Handling and Optimizations
This section focuses on the functionality of XA exceptions and error handling and the
Oracle optimizations in its XA implementation. It covers the following topics:

• XAException Classes and Methods

• Mapping Between Oracle Errors and XA Errors

• XA Error Handling

• Oracle XA Optimizations

The exception and error-handling discussion includes the standard XA exception class
and the Oracle-specific XA exception class, as well as particular XA error codes and
error-handling techniques.

33.3.1 XAException Classes and Methods
XA methods throw XA exceptions, as opposed to general exceptions or
SQLExceptions. An XA exception is an instance of the standard class
javax.transaction.xa.XAException or a subclass.

Chapter 33
Error Handling and Optimizations

33-14

An Oracle XAException is an instance that consists of an Oracle error portion and an
XA error portion. Oracle provides the oracle.jdbc.xa.OracleXAException subclasses
of the standard javax.transaction.xa.XAException class. An OracleXAException
instance is constructed using one of the following constructors:

public OracleXAException()

public OracleXAException(int error)

The error value is an error code that combines an Oracle SQL error value and an XA
error value. The JDBC driver determines exactly how to combine the Oracle and XA
error values.

The OracleXAException class has the following methods:

• public int getOracleError()

This method returns the Oracle SQL error code pertaining to the exception, a
standard ORA error number or 0 if there is no Oracle SQL error.

• public int getXAError()

This method returns the XA error code pertaining to the exception. XA error values
are defined in the javax.transaction.xa.XAException class.

33.3.2 Mapping Between Oracle Errors and XA Errors
Oracle errors correspond to XA errors in OracleXAException instances as
documented in Table 33-2.

Table 33-2 Oracle-XA Error Mapping

Oracle Error Code XA Error Code

ORA 24756 XAException.XAER_NOTA

ORA 24764 XAException.XA_HEURCOM

ORA 24765 XAException.XA_HEURRB

ORA 24766 XAException.XA_HEURMIX

ORA 24767 XAException.XA_RDONLY

ORA 25351 XAException.XA_RETRY

ORA 30006 XAException.XA_RETRY

ORA 24763 XAException.XAER_PROTO

ORA 24769 XAException.XAER_PROTO

ORA 24770 XAException.XAER_PROTO

ORA 24776 XAException.XAER_PROTO

ORA 2056 XAException.XAER_PROTO

ORA 17448 XAException.XAER_PROTO

ORA 24768 XAException.XAER_PROTO

ORA 24775 XAException.XAER_PROTO

ORA 24761 XAException.XA_RBROLLBACK

Chapter 33
Error Handling and Optimizations

33-15

Table 33-2 (Cont.) Oracle-XA Error Mapping

Oracle Error Code XA Error Code

ORA 2091 XAException.XA_RBROLLBACK

ORA 2092 XAException.XA_RBROLLBACK

ORA 24780 XAException.XAER_RMERR

All other ORA errors XAException.XAER_RMFAIL

33.3.3 XA Error Handling
The following code snippet uses the OracleXAException class to process an XA
exception:

try {
 ...
 ...Perform XA operations...
 ...
} catch(OracleXAException oxae) {
 int oraerr = oxae.getOracleError();
 System.out.println("Error " + oraerr);
}
 catch(XAException xae)
{...Process generic XA exception...}

In case the XA operations did not throw an Oracle-specific XA exception, the code
drops through to process a generic XA exception.

33.3.4 Oracle XA Optimizations
Oracle JDBC has functionality to improve performance if two or more branches of a
distributed transaction use the same database instance, meaning that the
OracleXAResource instances associated with these branches are associated with the
same resource manager.

In such a circumstance, the prepare method of only one of these OracleXAResource
instances will return XA_OK or will fail. The rest will return XA_RDONLY, even if updates
are made. This allows the transaction manager to implicitly join all the transaction
branches and commit or roll back, in case of failure, the joined transaction through the
OracleXAResource instance that returned XA_OK or failed.

The transaction manager can use the OracleXAResource class isSameRM method to
determine if two OracleXAResource instances are using the same resource manager.
This way it can interpret the meaning of XA_RDONLY return values.

33.4 About Implementing a Distributed Transaction
This section provides an example of how to implement a distributed transaction using
Oracle XA functionality. This section covers the following topics:

• Summary of Imports for Oracle XA

• Oracle XA Code Sample

Chapter 33
About Implementing a Distributed Transaction

33-16

33.4.1 Summary of Imports for Oracle XA
You must import the following for Oracle XA functionality:

import oracle.jdbc.xa.OracleXid;
import oracle.jdbc.xa.OracleXAException;
import oracle.jdbc.pool.*;
import oracle.jdbc.xa.client.*;
import javax.transaction.xa.*;

The oracle.jdbc.pool package has classes for connection pooling functionality,
some of which have XA-related classes as subclasses.

Alternatively, if the code will run inside Oracle Database and access that database for
SQL operations, you must import oracle.jdbc.xa.server instead of
oracle.jdbc.xa.client.

import oracle.jdbc.xa.server.*;

If your application must access another Oracle Database as part of an XA transaction
using the server-side Thin driver, then your code can use the fully qualified names of
the oracle.xa.client classes.

The client and server packages each have versions of the OracleXADataSource,
OracleXAConnection, and OracleXAResource classes. Abstract versions of these three
classes are in the top-level oracle.jdbc.xa package.

33.4.2 Oracle XA Code Sample
This example uses a two-phase distributed transaction with two transaction branches,
each to a separate database.

Note that for simplicity, this example combines code that would typically be in a middle
tier with code that would typically be in a transaction manager, such as the
OracleXAResource method invocations and the creation of transaction IDs.

For brevity, the specifics of creating transaction IDs and performing SQL operations
are not shown here. The complete example is shipped with the product.

This example performs the following sequence:

1. Start transaction branch #1.

2. Start transaction branch #2.

3. Execute DML operations on branch #1.

4. Execute DML operations on branch #2.

5. End transaction branch #1.

6. End transaction branch #2.

7. Prepare branch #1.

8. Prepare branch #2.

9. Commit branch #1.

10. Commit branch #2.

Chapter 33
About Implementing a Distributed Transaction

33-17

// You need to import the java.sql package to use JDBC
import java.sql.*;
import javax.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.xa.OracleXid;
import oracle.jdbc.xa.OracleXAException;
import oracle.jdbc.xa.client.*;
import javax.transaction.xa.*;

class XA4
{
 public static void main (String args [])
 throws SQLException
 {

 try
 {
 String URL1 = "jdbc:oracle:oci:@";
 // You can put a database name after the @ sign in the connection URL.
 String URL2 ="jdbc:oracle:thin:@(description=(address=(host=localhost)
 (protocol=tcp)(port=5521))(connect_data=(service_name=orcl)))";
 // Create first DataSource and get connection
 OracleDataSource ods1 = new OracleDataSource();
 ods1.setURL(URL1);
 ods1.setUser("HR");
 ods1.setPassword("hr");
 Connection conna = ods1.getConnection();

 // Create second DataSource and get connection
 OracleDataSource ods2 = new OracleDataSource();
 ods2.setURL(URL2);
 ods2.setUser("HR");
 ods2.setPassword("hr");
 Connection connb = ods2.getConnection();

 // Prepare a statement to create the table
 Statement stmta = conna.createStatement ();

 // Prepare a statement to create the table
 Statement stmtb = connb.createStatement ();

 try
 {
 // Drop the test table
 stmta.execute ("drop table my_table");
 }
 catch (SQLException e)
 {
 // Ignore an error here
 }

 try
 {
 // Create a test table
 stmta.execute ("create table my_table (col1 int)");
 }
 catch (SQLException e)
 {
 // Ignore an error here too
 }

Chapter 33
About Implementing a Distributed Transaction

33-18

 try
 {
 // Drop the test table
 stmtb.execute ("drop table my_tab");
 }
 catch (SQLException e)
 {
 // Ignore an error here
 }

 try
 {
 // Create a test table
 stmtb.execute ("create table my_tab (col1 char(30))");
 }
 catch (SQLException e)
 {
 // Ignore an error here too
 }

 // Create XADataSource instances and set properties.
 OracleXADataSource oxds1 = new OracleXADataSource();
 oxds1.setURL("jdbc:oracle:oci:@");
 oxds1.setUser("HR");
 oxds1.setPassword("hr");

 OracleXADataSource oxds2 = new OracleXADataSource();

 oxds2.setURL("jdbc:oracle:thin:@(description=(address=(host=localhost)
 (protocol=tcp)(port=5521))(connect_data=(service_name=orcl)))");
 oxds2.setUser("HR");
 oxds2.setPassword("hr");

 // Get XA connections to the underlying data sources
 XAConnection pc1 = oxds1.getXAConnection();
 XAConnection pc2 = oxds2.getXAConnection();

 // Get the physical connections
 Connection conn1 = pc1.getConnection();
 Connection conn2 = pc2.getConnection();

 // Get the XA resources
 XAResource oxar1 = pc1.getXAResource();
 XAResource oxar2 = pc2.getXAResource();

 // Create the Xids With the Same Global Ids
 Xid xid1 = createXid(1);
 Xid xid2 = createXid(2);

 // Start the Resources
 oxar1.start (xid1, XAResource.TMNOFLAGS);
 oxar2.start (xid2, XAResource.TMNOFLAGS);

 // Execute SQL operations with conn1 and conn2
 doSomeWork1 (conn1);
 doSomeWork2 (conn2);

 // END both the branches -- IMPORTANT
 oxar1.end(xid1, XAResource.TMSUCCESS);
 oxar2.end(xid2, XAResource.TMSUCCESS);

Chapter 33
About Implementing a Distributed Transaction

33-19

 // Prepare the RMs
 int prp1 = oxar1.prepare (xid1);
 int prp2 = oxar2.prepare (xid2);

 System.out.println("Return value of prepare 1 is " + prp1);
 System.out.println("Return value of prepare 2 is " + prp2);

 boolean do_commit = true;

 if (!((prp1 == XAResource.XA_OK) || (prp1 == XAResource.XA_RDONLY)))
 do_commit = false;

 if (!((prp2 == XAResource.XA_OK) || (prp2 == XAResource.XA_RDONLY)))
 do_commit = false;

 System.out.println("do_commit is " + do_commit);
 System.out.println("Is oxar1 same as oxar2 ? " + oxar1.isSameRM(oxar2));

 if (prp1 == XAResource.XA_OK)
 if (do_commit)
 oxar1.commit (xid1, false);
 else
 oxar1.rollback (xid1);

 if (prp2 == XAResource.XA_OK)
 if (do_commit)
 oxar2.commit (xid2, false);
 else
 oxar2.rollback (xid2);

 // Close connections
 conn1.close();
 conn1 = null;
 conn2.close();
 conn2 = null;

 pc1.close();
 pc1 = null;
 pc2.close();
 pc2 = null;

 ResultSet rset = stmta.executeQuery ("select col1 from my_table");
 while (rset.next())
 System.out.println("Col1 is " + rset.getInt(1));

 rset.close();
 rset = null;

 rset = stmtb.executeQuery ("select col1 from my_tab");
 while (rset.next())
 System.out.println("Col1 is " + rset.getString(1));

 rset.close();
 rset = null;

 stmta.close();
 stmta = null;
 stmtb.close();
 stmtb = null;

Chapter 33
About Implementing a Distributed Transaction

33-20

 conna.close();
 conna = null;
 connb.close();
 connb = null;

 } catch (SQLException sqe)
 {
 sqe.printStackTrace();
 } catch (XAException xae)
 {
 if (xae instanceof OracleXAException) {
 System.out.println("XA Error is " +
 ((OracleXAException)xae).getXAError());
 System.out.println("SQL Error is " +
 ((OracleXAException)xae).getOracleError());
 }
 }
 }

 static Xid createXid(int bids)
 throws XAException
 {...Create transaction IDs...}

 private static void doSomeWork1 (Connection conn)
 throws SQLException
 {...Execute SQL operations...}

 private static void doSomeWork2 (Connection conn)
 throws SQLException
 {...Execute SQL operations...}
}

33.5 Native-XA in Oracle JDBC Drivers
In general, XA commands can be sent to the server in the following ways:

• Through non-native APIs

• Through native APIs

There is a huge performance difference between the two methods of sending XA
commands to the server. The use of native APIs provide high performance gains as
compared to the use of non-native APIs.

Prior to Oracle Database 10g, the Thin driver used non-native APIs to send XA
commands to the server because Thin native APIs were not available. The non-native
APIs use PL/SQL procedures, so they have the following disadvantages:

• They require different messages on the wire.

• They cause more round-trips to the database.

• They cause more cursors to remain open.

• They damage statement caching by occupying space in the Statement Cache.

Moreover, the implementation of non-native APIs is in the server. So, in order to solve
any problem in sending XA commands, it requires a server patch. This creates a major
issue because sometimes the patch requires restarting the server.

Chapter 33
Native-XA in Oracle JDBC Drivers

33-21

Starting from Oracle Database 10g, the Thin native APIs are available and are used to
send XA commands, by default. Native APIs are more than 10 times faster than the
non-native ones.

This section covers the following topics:

• OCI Native XA

• Thin Native XA

33.5.1 OCI Native XA
Native XA is enabled through the use of the tnsEntry and nativeXA properties of the
OracleXADataSource class.

Note:

Currently, OCI Native XA does not work in a multithreaded environment. The
OCI driver uses the C/XA library of Oracle to support distributed transactions,
which requires that an XAConnection be obtained for each thread before
resuming a global transaction.

Configuration and Installation

On a Solaris or Linux system, you need the libheteroxa11.so shared library to enable
the Native XA feature. This library must be installed and available in the search path
for the Native XA feature to work properly.

On a Microsoft Windows system, you need the heteroxa11.dll file to enable the
Native XA feature. This file must be installed and available in the Windows DLL path
for the Native XA feature to work properly.

Exception Handling

When using the Native XA feature in distributed transactions, it is recommended that
the application simply check for XAException or SQLException, rather than
OracleXAException or OracleSQLException.

Note:

The mapping from SQL error codes to standard XA error codes does not
apply to the Native XA feature.

Native XA Code Example

The following portion of code shows how to enable the Native XA feature:

...
// Create a XADataSource instance
OracleXADataSource oxds = new OracleXADataSource();
oxds.setURL(url);

// Set the nativeXA property to use Native XA feature

Chapter 33
Native-XA in Oracle JDBC Drivers

33-22

oxds.setNativeXA(true);

// Set the tnsEntry property to an older DB as required
oxds.setTNSEntryName("ora805");
...

Related Topics

• Features and Properties of Data Sources

• Native XA Messages

33.5.2 Thin Native XA
Like the JDBC OCI driver, the JDBC Thin driver also provides support for Native XA.
However, the JDBC Thin driver provides support for Native XA by default. This is
unlike the case of the JDBC OCI driver in which the support for Native XA is not
enabled by default.

You can disable Native XA by calling setNativeXA(false) on the XA data source as
follows:

...
// Create a XADataSource instance
OracleXADataSource oxds = new OracleXADataSource();
...
// Disabling Native XA
oxds.setNativeXA(false);
...

For example, you may need to disable Native XA as a workaround for a bug in the
Native XA code.

Chapter 33
Native-XA in Oracle JDBC Drivers

33-23

Part VIII
Manageability

This part discusses the database management and diagnosability support in Oracle
Java Database Connectivity (JDBC) drivers.

Part VIII contains the following chapters:

• Database Administration

• Diagnosability in JDBC

• JDBC DMS Metrics

34
Database Administration

This chapter discusses the database administration methods introduced in Oracle
Database 11g Release 1. This chapter contains the following sections:

• Using the Database Administration Methods

• Using the startup Method

• Using the shutdown Method

• A Complete Example

34.1 Using the Database Administration Methods
Starting from Oracle Database 11g Release 1, two JDBC methods, startup and
shutdown, has been added in the oracle.jdbc.OracleConnection interface, which
enable you to start up and shut down an Oracle Database instance. This is similar to
the way you would start up or shut down a database instance from SQL*Plus.

To use the startup and shutdown methods, you must:

• Have a dedicated connection to the server. You cannot be connected to a shared
server through a dispatcher.

• Be connected as SYSDBA or SYSOPER. To connect as SYSDBA or SYSOPER with Oracle
JDBC drivers, you need to set the INTERNAL_LOGON connection property
accordingly.

To log on as SYSDBA with the JDBC Thin driver you must configure the server to use
the password file. For example, to configure system/manager to connect as SYSDBA
with the JDBC Thin driver, perform the following:

1. From the command line, type:

orapwd file=$ORACLE_HOME/dbs/orapw entries=5
Enter password: password

2. Connect to database as SYSDBA and run the following commands from SQL*Plus:

GRANT SYSDBA TO system;
PASSWORD system
 Changing password for system
 New password: password
 Retype new password: password

3. Edit init.ora and add the following line:

REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

4. Restart the database instance.

As opposed to the JDBC Thin driver, the JDBC OCI driver can connect as SYSDBA or
SYSOPER locally without specifying a password file on the server.

34-1

34.2 Using the startup Method
To start a database instance using the startup method, the application must first
connect to the database as a SYSDBA or SYSOPER in the PRELIM_AUTH mode, which is
the only connection mode that is permitted when the database is down. You can do
this by setting the connection property PRELIM_AUTH to true. In the PRELIM_AUTH mode,
you can only start up a database instance that is down. You cannot run any SQL
statements in this mode.

Example

The following code snippet shows how to start up a database instance that is down:

 OracleDataSource ds = new OracleDataSource();
 Properties prop = new Properties();
 prop.setProperty("user","sys");
 prop.setProperty("password","manager");
 prop.setProperty("internal_logon","sysdba");
 prop.setProperty("prelim_auth","true");
 ds.setConnectionProperties(prop);
 ds.setURL("jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=XYZ.com)
(PORT=5221))"
+ "(CONNECT_DATA=(SERVICE_NAME=rdbms.devplmt.XYZ.com)))");
 OracleConnection conn = (OracleConnection)ds.getConnection();
 conn.startup(OracleConnection.DatabaseStartupMode.NO_RESTRICTION);
 conn.close();

Note:

The startup method will start up the database using the server parameter
file. Oracle JDBC drivers do not support database startup using the client
parameter file.

34.2.1 Database Startup Options
The startup method takes a parameter that specifies the database startup option.
Table 34-1 lists the supported database startup options. These options are defined in
the oracle.jdbc.OracleConnection.DatabaseStartupMode class.

Table 34-1 Supported Database Startup Options

Option Description

FORCE Shuts down the current instance, if any, of database in the abort mode before starting a
new instance.

NO_RESTRICTION Starts up the database with no restrictions.

RESTRICT Starts up the database and allows database access only to users with both the CREATE
SESSION and RESTRICTED SESSION privileges, typically, the DBA.

Chapter 34
Using the startup Method

34-2

The startup method only starts up a database instance. It neither mounts it nor opens
it. For mounting and opening the database instance, you have to reconnect as SYSDBA
or SYSOPER, without the PRELIM_AUTH mode.

Example

The following code snippet shows how to mount and open a database instance:

 OracleDataSource ds1 = new OracleDataSource();
 Properties prop1 = new Properties();
 prop1.setProperty("user","sys");
 prop1.setProperty("password","manager");
 prop1.setProperty("internal_logon","sysdba");
 ds1.setConnectionProperties(prop1);
 ds1.setURL(DB_URL);
 OracleConnection conn1 = (OracleConnection)ds1.getConnection();
 Statement stmt = conn1.createStatement();
 stmt.executeUpdate("ALTER DATABASE MOUNT");
 stmt.executeUpdate("ALTER DATABASE OPEN");

34.3 Using the shutdown Method
The shutdown method enables you to shut down an Oracle Database instance. To use
this method, you must be connected to the database as a SYSDBA or SYSOPER.

Example

The following code snippet shows how to shut down a database instance:

 OracleDataSource ds2 = new OracleDataSource();
...
 OracleConnection conn2 = (OracleConnection)ds2.getConnection();
 conn2.shutdown(OracleConnection.DatabaseShutdownMode.IMMEDIATE);
 Statement stmt1 = conn2.createStatement();
 stmt1.executeUpdate("ALTER DATABASE CLOSE NORMAL");
 stmt1.executeUpdate("ALTER DATABASE DISMOUNT");
 stmt1.close();
 conn2.shutdown(OracleConnection.DatabaseShutdownMode.FINAL);
 conn2.close();

34.3.1 Database Shutdown Options
Like the startup method, the shutdown method also takes a parameter. In this case,
the parameter specifies the database shutdown option. Table 34-2 lists the supported
database shutdown options. These options are defined in the
oracle.jdbc.OracleConnection.DatabaseShutdownMode class.

Table 34-2 Supported Database Shutdown Options

Option Description

ABORT Does not wait for current calls to complete or users to disconnect from the database.

CONNECT Refuses any new connection and waits for existing connection to end.

FINAL Shuts down the database.

IMMEDIATE Does not wait for current calls to complete or users to disconnect from the database.

Chapter 34
Using the shutdown Method

34-3

Table 34-2 (Cont.) Supported Database Shutdown Options

Option Description

TRANSACTIONAL Refuses new transactions and waits for active transactions to end.

TRANSACTIONAL_LOCAL Refuses new local transactions and waits for active local transactions to end.

For shutdown options other than ABORT and FINAL, you must call the shutdown method
again with the FINAL option to actually shut down the database.

Note:

The shutdown(DatabaseShutdownMode.FINAL) method must be preceded by
another call to the shutdown method with one of the following options:
CONNECT, TRANSACTIONAL, TRANSACTIONAL_LOCAL, or IMMEDIATE. Otherwise,
the call hangs.

34.3.2 Standard Database Shutdown Process
A standard way to shut down the database is as follows:

1. Initiate shutdown by prohibiting further connections or transactions in the
database. The shut down option can be either CONNECT, TRANSACTIONAL,
TRANSACTIONAL_LOCAL, or IMMEDIATE.

2. Dismount and close the database by calling the appropriate ALTER DATABASE
command.

3. Finish shutdown using the FINAL option.

In special circumstances to shut down the database as fast as possible, the ABORT
option can be used. This is the equivalent to SHUTDOWN ABORT in SQL*Plus.

34.4 A Complete Example
Example 34-1 illustrates the use of the startup and shutdown methods.

Example 34-1 Database Startup and Shutdown

import java.sql.Statement;
import java.util.Properties;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.pool.OracleDataSource;
/**
 * To logon as sysdba, you need to create a password file for user "sys":
 * orapwd file=/path/orapw password=password entries=300
 * and add the following setting in init.ora:
 * REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
 * then restart the database.
 */
public class DBStartup
{
 static final String DB_URL =

Chapter 34
A Complete Example

34-4

"jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=localhost)(PORT=5221))"
+ "(CONNECT_DATA=(SERVICE_NAME=rdbms.devplmt.XYZ.com)))";

 public static void main(String[] argv) throws Exception
 {
// Starting up the database:
 OracleDataSource ds = new OracleDataSource();
 Properties prop = new Properties();
 prop.setProperty("user","sys");
 prop.setProperty("password","manager");
 prop.setProperty("internal_logon","sysdba");
 prop.setProperty("prelim_auth","true");
 ds.setConnectionProperties(prop);
 ds.setURL(DB_URL);
 OracleConnection conn = (OracleConnection)ds.getConnection();
 conn.startup(OracleConnection.DatabaseStartupMode.NO_RESTRICTION);
 conn.close();

// Mounting and opening the database
 OracleDataSource ds1 = new OracleDataSource();
 Properties prop1 = new Properties();
 prop1.setProperty("user","sys");
 prop1.setProperty("password","manager");
 prop1.setProperty("internal_logon","sysdba");
 ds1.setConnectionProperties(prop1);
 ds1.setURL(DB_URL);
 OracleConnection conn1 = (OracleConnection)ds1.getConnection();
 Statement stmt = conn1.createStatement();
 stmt.executeUpdate("ALTER DATABASE MOUNT");
 stmt.executeUpdate("ALTER DATABASE OPEN");
 stmt.close();
 conn1.close();

// Shutting down the database
 OracleDataSource ds2 = new OracleDataSource();
 Properties prop = new Properties();
 prop.setProperty("user","sys");
 prop.setProperty("password","manager");
 prop.setProperty("internal_logon","sysdba");
 ds2.setConnectionProperties(prop);
 ds2.setURL(DB_URL);
 OracleConnection conn2 = (OracleConnection)ds2.getConnection();
 conn2.shutdown(OracleConnection.DatabaseShutdownMode.IMMEDIATE);
 Statement stmt1 = conn2.createStatement();
 stmt1.executeUpdate("ALTER DATABASE CLOSE NORMAL");
 stmt1.executeUpdate("ALTER DATABASE DISMOUNT");
 stmt1.close();
 conn2.shutdown(OracleConnection.DatabaseShutdownMode.FINAL);
 conn2.close();
 }
}

Chapter 34
A Complete Example

34-5

35
Diagnosability in JDBC

The diagnosabilty features of Oracle Database 12c Release 1 (12.1) enable you to
diagnose problems in the applications that use Oracle JDBC drivers and the problems
in the drivers themselves. They also reduce the effort required to develop and maintain
Java applications that access an Oracle Database instance using Oracle JDBC
drivers.

Oracle JDBC drivers provide the following diagnosabilty features that enable users to
identify and fix problems in their JDBC applications:

• Logging Feature of Oracle JDBC Drivers

• Diagnosability Management

Note:

The diagnosability features of the JDBC drivers are based on the standard
java.util.logging framework and the javax.management MBean
framework. Information about these standard frameworks is not covered in
this document.

35.1 About Logging Feature of Oracle JDBC Drivers
This section describes the following concepts:

• Overview of Logging Feature of Oracle JDBC Drivers

• Enabling and Using JDBC Logging

• Enabling or Disabling Feature-Specific Logging at Runtime

• Using the Logging Configuration File for Feature-Specific Logging

• Performance, Scalability, and Security Issues

35.1.1 Overview of Logging Feature of Oracle JDBC Drivers
This feature logs information about events that occur when JDBC driver code runs.
Events can include user-visible events, such as SQL exceptions, running of SQL
statements, and detailed JDBC internal events, such as entry to and exit from internal
JDBC methods. Users can enable this feature to log specific events or all the events.

Prior to Oracle Database 11g, JDBC drivers supported J2SE 2.0 and 3.0. These
versions of J2SE did not include java.util.logging. Therefore, the logging feature
provided by JDBC driver releases prior to Oracle Database 11g, differs from the
java.util.logging framework.

Starting from Oracle Database 11g, the JDBC drivers no longer support J2SE 2.0 and
3.0. Therefore, the logging feature of JDBC drivers makes full use of the standard

35-1

java.util.logging package. The enhanced logging system makes effective use of
log levels to enable users to restrict log output to things of interest. It logs specific
classes of information more consistently, making it easier for the user to understand
the log file.

This feature does not introduce new APIs or configuration files. Only new parameters
are added to the existing standard java.util.logging configuration file. These
parameters are identical in use to the existing parameters and are intrinsic to using
java.util.logging.

Note:

Oracle does not guarantee the exact content of the generated logs. To a
large extent the log content is dependent on the details of the
implementation. The details of the implementation change with every
release, and therefore, the exact content of the logs are likely to change from
release to release.

35.1.2 Enabling and Using JDBC Logging
Before you can start debugging your Java application, you must enable and configure
JDBC logging. This section covers the steps you must perform to enable and use
JDBC logging. It describes the following:

• About Configuring the CLASSPATH

• Enabling Logging

• Configuring Logging

• Using Loggers

• Logging Example

35.1.2.1 About Configuring the CLASSPATH
Oracle ships several JAR files for each version of the JDBC drivers. The optimized
JAR files do not contain any logging code and, therefore, do not generate any log
output when used. To get log output, you must use the debug JAR files, which are
indicated with a "_g" in the file name, like ojdbc6_g.jar or ojdbc7_g.jar. The debug
JAR file must be included in the CLASSPATH.

Note:

Ensure that the debug JAR file, say ojdbc6_g.jar or ojdbc7_g.jar, is the
only Oracle JDBC JAR file in the CLASSPATH.

35.1.2.2 Enabling Logging
You can enable logging in the following ways:

• Setting a Java system property

Chapter 35
About Logging Feature of Oracle JDBC Drivers

35-2

You can enable logging by setting the oracle.jdbc.Trace system property.

java -Doracle.jdbc.Trace=true ...

Setting the system property enables global logging, which means that logging is
enabled for the entire application. You can use global logging if you want to debug
the entire application, or if you cannot or do not want to change the source code of
the application.

• Programmatically

You can programmatically enable or disable logging in the following way:

First, get the ObjectName of the Diagnosability MBean. The ObjectName is

com.oracle.jdbc:type=diagnosability,name=<loader>

Here, loader is a unique name based on the class loader instance that loaded the
Oracle JDBC drivers.

Note:

The drivers can be loaded multiple times in a single VM. So, there can
be multiple MBeans, each with a unique name.

Now, write the following lines of code:

ClassLoader l = oracle.jdbc.OracleDriver.getClassLoader();
String loader = l.getName() + "@" + l.hashCode();
// compute the ObjectName

javax.management.ObjectName name = new
javax.management.ObjectName("com.oracle.jdbc:type=diagnosability,
name="+loader);

// get the MBean server
javax.management.MBeanServer mbs =
java.lang.management.ManagementFactory.getPlatformMBeanServer();

// find out if logging is enabled or not
System.out.println("LoggingEnabled = " + mbs.getAttribute(name,
"LoggingEnabled"));

// enable logging
mbs.setAttribute(name, new javax.management.Attribute("LoggingEnabled", true));

// disable logging
mbs.setAttribute(name, new javax.management.Attribute("LoggingEnabled", false));

Chapter 35
About Logging Feature of Oracle JDBC Drivers

35-3

Note:

– If the same class loader loads the JDBC drivers multiple times, then
each subsequent MBean increments the value of the l.hashCode()
method, so as to create a unique name. It may be problematic to
identify which MBean is associated with which JDBC driver instance.

– If there is only one instance of the JDBC drivers loaded, then set the
name to "*".

Programmatic enabling and disabling of logging helps you to control what parts of your
application need to generate log output.

Note:

Enabling logging using either of the methods would only generate a minimal
log of serious errors. Usually this is not of much use. To generate a more
useful and detailed log, you must configure java.util.logging.

35.1.2.3 Configuring Logging
To generate a useful and detailed log, you must configure java.util.logging. This
can be done either through a configuration file or programmatically.

A sample configuration file, OracleLog.properties, is provided as part of the JDBC
installation in the demo directory. It contains basic information about how to configure
java.util.logging and provides some initial settings that you can start with. You may
use this sample file as is, edit the file and use it, rename the file and edit it, or create
an entirely new file of any name.

To use a configuration file, you must identify it to the Java run-time. This can be done
by setting a system property. For example:

java -Djava.util.logging.config.file=/jdbc/demo/OracleLog.properties.

It is read by the java.util.logging system. This file can reside anywhere.

You can use both java.util.logging.config.file and oracle.jdbc.Trace at the
same time.

java -Djava.util.logging.config.file=/jdbc/demo/OracleLog.properties -
Doracle.jdbc.Trace=true

You can use the default OracleLog.properties file. It may or may not get you the
desired output. You can also create and use your own configuration file by following
these steps:

1. Create a file named myConfig.properties. You can use any name you choose.

2. Insert the following lines of text in the file:

.level=SEVERE
oracle.jdbc.level=INFO
oracle.jdbc.handlers=java.util.logging.ConsoleHandler

Chapter 35
About Logging Feature of Oracle JDBC Drivers

35-4

java.util.logging.ConsoleHandler.level=INFO
java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

3. Save the file.

4. Set the system property to use this configuration file.

java -Djava.util.logging.config.file=<filepath>/myConfig.properties ...

filepath is the path of the folder where you have saved the
myConfig.properties file.

Note:

If you use the settings specified in Step 2, then a huge amount of log output
will be generated. Also, the log output will be displayed on the console.

35.1.2.4 Redirecting the Log Output to a File
You can also configure java.util.logging to redirect the log output into a file. To do
so, modify the configuration file as follows:

.level=SEVERE
oracle.jdbc.level=INFO
oracle.jdbc.handlers=java.util.logging.FileHandler
java.util.logging.FileHandler.level=INFO
java.util.logging.FileHandler.pattern=jdbc.log
java.util.logging.FileHandler.count=1
java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter

This will generate exactly the same log output and save it in a file named jdbc.log in
the current directory.

You can control the amount of detail by changing the level settings. The defined levels
from the least detailed to the most detailed are the following:

• OFF

Turns off logging.

• SEVERE

Logs SQLExceptions and internal errors.

• WARNING

Logs SQLWarnings and bad but not fatal internal conditions.

• INFO

Logs infrequent but significant events and errors. It produces a relatively low
volume of log messages.

• CONFIG

Logs SQL strings that are executed.

• FINE

Logs the entry and exit to every public method providing a detailed trace of JDBC
operations. It produces a fairly high volume of log messages.

Chapter 35
About Logging Feature of Oracle JDBC Drivers

35-5

• FINER

Logs calls to internal methods.

• FINEST

Logs calls to high volume internal methods.

• ALL

Logs all the details. This is the most detailed level of logging.

Note:

Levels more detailed than FINE generate huge log volumes.

In the example provided earlier, to reduce the amount of detail, change the
java.util.logging.FileHandler.level setting from ALL to INFO:

java.util.logging.FileHandler.level=INFO

Note:

INFO logs the SQL strings that are executed.

Although you can, it is not necessary to change the level of the oracle.jdbc logger.
Setting the FileHandler level will control what log messages are dumped into the log
file.

35.1.2.5 Using Loggers
Setting the level reduces all the logging output from JDBC. However, sometimes you
need a lot of output from one part of the code and very little from other parts. To do
that you must understand more about loggers.

Loggers exist in a tree structure defined by their names. The root logger is named "",
the empty string. If you look at the first line of the configuration file you
see .level=SEVERE. This is setting the level of the root logger. The next line is
oracle.jdbc.level=INFO. This sets the level of the logger named oracle.jdbc. The
oracle.jdbc logger is a member of the logger tree. Its parent is named oracle. The
parent of the oracle logger is the root logger (the empty string).

Logging messages are sent to a particular logger, for example, oracle.jdbc. If the
message passes the level check at that level, then the message is passed to the
handler at that level, if any, and to the parent logger. So a log message sent to
oracle.log is compared against that logger's level, INFO if you are following along. If
the level is the same or less (less detailed) then it is sent to the FileHandler and to the
parent logger, 'oracle'. Again it is checked against the level. If as in this case, the level
is not set then it uses the parent level, SEVERE. If the message level is the same or less
it is passed to the handler, which there is not one, and sent to the parent. In this case
the parent in the root logger.All this tree structure did not help you reduce the amount
of output. What will help is that the JDBC drivers use several subloggers. If you restrict

Chapter 35
About Logging Feature of Oracle JDBC Drivers

35-6

the log messages to one of the subloggers you will get substantially less output. The
loggers used by Oracle JDBC drivers include the following:

• oracle.jdbc

• oracle.jdbc.pool

• oracle.jdbc.rowset

• oracle.jdbc.xa

• oracle.sql

Note:

The loggers used by the drivers may vary from release to release.

35.1.2.6 Logging Example
Suppose you want to trace what is happening in the oracle.sql component and also
want to capture some basic information about the rest of the driver. This is a more
complex use of logging. The following are the entries in the config file:

 #
 # set levels
 #
.level=SEVERE
oracle.level=INFO
oracle.jdbc.driver.level=INFO
oracle.jdbc.pool.level=OFF
oracle.jdbc.util.level=OFF
oracle.sql.level=INFO
 #
 # configure handlers
 #
oracle.handlers=java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level=INFO
java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

Let us consider what each line in the configuration file is doing.

.level=SEVERE

Sets the logging level of the root logger to SEVERE. We do not want to see any logging
from other, non-Oracle components unless something fails badly. Therefore, we set
the default level for all loggers to SEVERE. Each logger inherits its level from its parent
unless set explicitly. By setting the level of the root logger to SEVERE we ensure that all
other loggers inherit that level except for the ones we set otherwise.

oracle.level=INFO

We want log output from both the oracle.sql and oracle.jdbc.driver loggers. Their
common ancestor is oracle. Therefore, we set the level of the oracle logger to INFO.
We will control the detail more explicitly at lower levels.

oracle.jdbc.driver.level=INFO

Chapter 35
About Logging Feature of Oracle JDBC Drivers

35-7

We only want to see the SQL execution from oracle.jdbc.driver. Therefore, we set
the level to INFO. This is a fairly low volume level, but will help us to keep track of what
our test is doing.

oracle.jdbc.pool.level=OFF

We are using a DataSource in our test and do not want to see all of that logging.
Therefore, we turn it OFF.

oracle.jdbc.util.level=OFF

We do not want to see the logging from the oracle.jdbc.util package. If we were
using XA or row sets we would turn them off as well.

oracle.sql.level=INFO

We want to see what is happening in oracle.sql. Therefore, we set the level to INFO.
This provides a lot of information about the public method calls without overwhelming
detail.

oracle.handlers=java.util.logging.ConsoleHandler

We are going to dump everything to stderr. When we run the test we will redirect
stderr to a file.

java.util.logging.ConsoleHandler.level=INFO

We want to dump everything to the console which is System.err. In this case, we are
doing the filtering with the loggers rather than the handler.

java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

We will use a simple, more or less human readable format.

When you run your test with this configuration file, you will get moderately detailed
information from the oracle.sql package, a little bit of information from the core driver
code, and nothing from any other code.

You can also use XMLFormatter for sending logs to Oracle Support.

You can implement and use a custom java.util.logging.Filter to obtain finer
control of the data captured in the logs. This is a standard java.util.logging feature
and is documented in the JSE JavaDoc. A custom Filter enables you to:

• Capture only one thread in multithreaded applications

• Capture intermittent errors in long running applications

35.1.3 Enabling or Disabling Feature-Specific Logging at Run Time

Starting from Oracle Database 12c Release 2 (12.2.0.1), JDBC provides support for
enabling and disabling feature-specific logging for selected features during runtime.
For example, you can enable logging only for Load Balancing feature, while disabling
logging for other features of JDBC. Again, during the same run, you can enable
logging for Fast Connection Failover feature and disable logging for Load Balancing
feature.

By default, logging for all features is enabled.

Chapter 35
About Logging Feature of Oracle JDBC Drivers

35-8

The logging switching knob of JDBC is a part of the OracleDiagnosabilityMBean. For
using this bean, start JConsole and connect to the application.

Displaying Supported Features
For a list of supported features, use the following method:

getTraceController().getSupportedFeatures()

Displaying Enabled Features
For a list of currently enabled features, use the following method:

getTraceController().getEnabledFeatures()

Enabling Logging for a Feature
For enabling logging for a specific feature or for all features, use the trace method in
the following ways:

trace(boolean enable, String feature_name)
trace(boolean enable, ALL)

Disabling Logging for a Feature
For disabling logging for a specific feature or for all features, use the trace method in
the following ways:

trace(boolean disable, String feature_name)
trace(boolean disable, ALL)

Suspending and Resuming Logging
Use the following methods for suspending and resuming logging respectively:

suspend()
resume()

35.1.4 Using the Logging Configuration File for Feature-Specific
Logging

Starting from Oracle Database 12c Release 2 (12.2.0.1), you can enable or disable
logging for specific features by adding a property in the logging configuration file. By
default, logging is enabled for all features. Otherwise, you can enable logging for all
features using the following syntax:

clio.feature.all = on

For feature-specific enabling of logging, you can use the following properties:

clio.feature.pool_statistics = on
clio.feature.check_in = on
clio.feature.check_out = on
clio.feature.labeling = on

Chapter 35
About Logging Feature of Oracle JDBC Drivers

35-9

clio.feature.conn_construction = on
clio.feature.conn_destruction = on
clio.feature.high_availability = on
clio.feature.load_balancing = on
clio.feature.transaction_affinity = on
clio.feature.web_affinity = on
clio.feature.data_affinity = on
clio.feature.conn_harvesting = on
clio.feature.ttl_conn_timeout = on
clio.feature.abandoned_conn_timeout = on
clio.feature.admin = on
clio.feature.sharding = on

35.1.5 Performance, Scalability, and Security Issues
Although the logging feature enables you to trace or debug your application and
generate detail log output, it has certain performance, scalability, and security issues.

Caution:

Trace files are likely to contain sensitive information including user names,
passwords, and user data. Oracle recommends that users do not use JDBC
debug JAR files with production data or credentials, so as to protect that
sensitive information. In addition, Oracle recommends that users must follow
good security practices for creating trace files.

Security Concerns

Enabling full logging creates the risk that sensitive information will be exposed in the
trace files. This is intrinsic to the logging feature. However, only certain JDBC JAR files
include the JDBC logging feature. The following JAR files include full logging and
should not be used in a production environment:

• ojdbc8_g.jar

• ojdbc8dms_g.jar

The ojdbc8dms.jar JAR file includes a limited logging capability.

Note:

Database user names and passwords do not appear in log files created by
the ojdbc8_g.jar and the ojdbc8dms_g.jar JAR files. However, sensitive
user data that is part of a SQL statement, a defined value, or a bind value
can appear in a log created using one of these JAR files.

About Secure Handling of Trace Files

For secure handling of trace files, you must:

Chapter 35
About Logging Feature of Oracle JDBC Drivers

35-10

• Trace only as much of the execution as needed to minimize the amount of
sensitive information in the trace file.

• Create the trace file in a directory owned by you. Do not create the file in common
public directories, such as the /tmp directory.

• Set the UMASK for the directory where the trace file is created. This will restrict user
access to the trace file.

• Not enable the append option in java.util.logging.FileHandler. This will
provide better control over the owner and permissions on the trace file.

• Not grant LoggingPermission to the JDBC code base, when using the ojdbc8.jar
file. The ojdbc8dms.jar file provides limited log output and requires
LoggingPermission. The debug JAR files, ojdbc8_g.jar and ojdbc8dms_g.jar
have extensive trace and require LoggingPermission.

Performance and Scalability Issues

Logging has substantial impact on performance. You must make sure that logging is
not enabled in production systems. Also, you must not use the debug JAR files in a
production environment. When logging is disabled, it has no impact on performance.

Logging involves protected access to a number of shared resources resulting in
severely reduced scalability. This is intrinsic to the java.util.logging framework.

35.2 Diagnosability Management
The JDBC diagnosability management feature introduces an MBean,
oracle.jdbc.driver.OracleDiagnosabilityMBean. This MBean provides means to
enable and disable JDBC logging.

See Also:

For information about the OracleDiagnosabilityMBean API, refer to the
JDBC Javadoc.

In future releases, the MBean will be enhanced to provide additional statistics about
JDBC internals.

Security Concerns

This feature can enable JDBC logging. Enabling JDBC logging does not require any
special permission. However, once logging is enabled, generating any log output
requires the standard Java permission LoggingPermission. Without this permission,
any JDBC operation that would generate log output will throw a security exception.
This is a standard Java mechanism.

Chapter 35
Diagnosability Management

35-11

36
JDBC DMS Metrics

DMS metrics are used to measure the performance of application components.

This chapter discusses the following topics:

• Overview of JDBC DMS Metrics

• About Determining the Type of Metric to Be Generated

• About Generating the SQLText Metric

• About Accessing DMS Metrics Using JMX

Note:

There is another kind of metrics called end-to-end metrics. End-to-end
metrics are used for tagging application activity from the entry into the
application code through JDBC to the database and back.

JDBC supports the following end-to-end metrics:

• Action

• ClientId

• ExecutionContextId

• Module

• State

For earlier releases, to work with the preceding metrics, you could use the
setEndToEndMetrics and getEndToEndMetrics methods of the
oracle.jdbc.OracleConnection interface. However, starting from Oracle
Database 12c Release 1 (12.1), these methods have been deprecated.
Oracle recommends to use the setClientInfo and getClientInfo methods
instead of the setEndToEndMetrics and getEndToEndMetrics methods.

In Oracle Database 10g, Oracle Java Database Connectivity (JDBC)
supports end-to-end metrics. In Oracle Database 12c Release 1 (12.1), an
application can set the end-to-end metrics directly only when it does not use
a DMS-enabled JAR files. But, if the application uses a DMS-enabled JAR
file, the end-to-end metrics can be set only through DMS.

WARNING:

Oracle strongly recommends using DMS metrics, if the application uses a
DMS-enabled JAR file.

36-1

See Also:

Oracle Database JDBC Java API Reference for more information about end-
to-end metrics

36.1 Overview of JDBC DMS Metrics
DMS metrics enable application and system developers to measure and export
customized performance metrics for specific software components. All DMS metrics
are available in the following DMS-enabled JAR files:

• ojdbc6dms.jar

• ojdbc6dms_g.jar

• ojdbc7dms.jar

• ojdbc7dms_g.jar

Any other JDBC JAR files do not generate any DMS metrics. The metrics generated in
Oracle Database 12c Release 1 (12.1) are different from 10.2, 10.1, 9.2, and earlier
versions of Oracle JDBC as it makes no attempt to retain compatibility with earlier
versions. There are also no compatibility modes. A system that is dependent on the
exact details of the DMS metrics generated by earlier versions of JDBC may have
unexpected behavior when processing the metrics generated by Oracle JDBC 12c.
This is by design and cannot be changed.

Statement metrics can be reported consolidated for all statements in a connection or
individually for each statement. All DMS metrics, except those related to individual
statements, are enabled at all times.

Note:

You can enable or disable the SQLText statement metric. It is disabled by
default. If enabled, it is enabled for all statements.

36.2 About Determining the Type of Metric to Be Generated
To determine whether to use consolidated or individual metrics, JDBC checks the
DMSConsole sensor weight. If the sensor weight is less than or equal to
DMSConsole.NORMAL, then JDBC generates consolidated statement metrics. If the
sensor weight is greater than DMSConsole.NORMAL, then JDBC generates individual
statement metrics.

JDBC checks the DMSConsole sensor weight when creating a Prepared or Callable
statement and depending on the sensor weight at the time the statement is created,
the metrics are generated. Changing the value of the sensor weight, after the
statement has been created, does not cause a statement to switch between
consolidated and individual metrics.

Chapter 36
Overview of JDBC DMS Metrics

36-2

Note:

In the presence of Statement caching, it may appear that changing sensor
weight has no impact as statements are retrieved from the cache rather than
created anew.

There is only one list of statement metrics that is generated for both consolidated and
individual statement metrics. The only difference between these two lists is the
aggregation of the statements. When individual statement metrics are generated, one
set of metrics is generated for each distinct statement object created by the JDBC
driver. On the other hand, when consolidated statement metrics are generated, all
statements created by a given connection use the same set of statement metrics.

For example, consider an 'execute' phase event. If individual statement metrics are
used, then each statement created will have a distinct 'execute' phase event. So, from
two such statements, it will be possible to distinguish the execution statistics for the
two separate statements. If one has an execution time of 1 second and the other an
execution time of 3 seconds, then there will be two distinct 'execute' phase events, one
with a total time and average of 1 second and the other with a total time and average
of 3 seconds. But, if consolidated statement metrics are used, all statements will use
the single 'execute' phase event common to the connection. So, from two such
statements created by the same connection, it will not be possible to distinguish the
execution statistics for the two statements. If one has an execution time of 1 second
and the other an execution time of 3 seconds, then the common 'execute' phase event
will report a total execution time of 4 seconds and an average of 2 seconds.

36.3 About Generating the SQLText Metric
Depending on the version of DMS, there are two mechanisms for determining the
generating of the SQLText statement metrics:

• If the 12c version of the DMS JAR file is present in the classpath environment
variable, then JDBC checks the DMS update SQL text flag. If this flag is true, then
the SQLText metric is updated.

• If the 12c version of the DMS JAR file is not present in the classpath environment
variable, then JDBC uses the value of the DMSStatementMetrics connection
property. If this statement property is true, then SQLText metric is updated. The
default value of this connection property is false.

Whether or not the SQLText metric will be generated is independent of the use of the
type of statement metrics used, that is, individual statement metrics or consolidated
statement metrics.

36.4 About Accessing DMS Metrics Using JMX
JMX (Java Management Extensions) is a Java technology that supplies tools for
managing and monitoring applications, system objects, devices, service-oriented
networks, and the JVM (Java Virtual Machine). You can easily access DMS metrics at
run time using a management application that supports JMX. For more information
about using JMX to access DMS data, go to the following URL http://
www.oracle.com/technetwork/middleware/toplink/overview/index.html

Chapter 36
About Generating the SQLText Metric

36-3

http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html

See Also:

Oracle Database Java Developer's Guide for more information about JMX

Chapter 36
About Accessing DMS Metrics Using JMX

36-4

Part IX
Appendixes

This part consists of appendixes that discuss Java Database Connectivity (JDBC)
reference information, tips for coding JDBC applications, JDBC error messages, and
troubleshooting JDBC applications.

Part IX contains the following appendixes:

• JDBC Reference Information

• Oracle RAC Fast Application Notification

• JDBC Coding Tips

• JDBC Error Messages

• Troubleshooting

A
JDBC Reference Information

This appendix contains detailed Java Database Connectivity (JDBC) reference
information, including the following topics:

• Supported SQL-JDBC Data Type Mappings

• Supported SQL and PL/SQL Data Types

• About Using PL/SQL Types

• Using Embedded JDBC Escape Syntax

• Oracle JDBC Notes and Limitations

A.1 Supported SQL-JDBC Data Type Mappings
The following table lists all the possible Java types to which a given SQL data type can
be validly mapped. Oracle JDBC drivers will support these nondefault mappings. For
example, to materialize SQL CHAR data in an oracle.sql.CHAR object, use the getCHAR
method. To materialize it as a java.math.BigDecimal object, use the getBigDecimal
method.

Note:

The classes, where oracle.jdbc.OracleData appears in italic, can be
generated by Oracle JVM Web Services Call-Out Utility.

Table A-1 Valid SQL Data Type-Java Class Mappings

SQL data type Java types

CHAR, VARCHAR2, LONG java.lang.String

oracle.sql.CHAR

A-1

Table A-1 (Cont.) Valid SQL Data Type-Java Class Mappings

SQL data type Java types

NUMBER boolean

char

byte

short

int

long

float

double

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

oracle.sql.NUMBER

BINARY_INTEGER boolean

char

byte

short

int

long

BINARY_FLOAT oracle.sql.BINARY_FLOAT

BINARY_DOUBLE oracle.sql.BINARY_DOUBLE

DATE oracle.sql.DATE

RAW oracle.sql.RAW

BLOB oracle.jdbc.OracleBlob1

CLOB oracle.jdbc.OracleClob2

BFILE oracle.sql.BFILE

ROWID oracle.sql.ROWID

TIMESTAMP oracle.sql.TIMESTAMP

TIMESTAMP WITH TIME ZONE oracle.sql.TIMESTAMPTZ

TIMESTAMP WITH LOCAL TIME
ZONE

oracle.sql.TIMESTAMPLTZ

ref cursor java.sql.ResultSet

sqlj.runtime.ResultSetIterator

user defined named types, ADTs oracle.jdbc.OracleStruct3

opaque named types oracle.jdbc.OracleOpaque4

Appendix A
Supported SQL-JDBC Data Type Mappings

A-2

Table A-1 (Cont.) Valid SQL Data Type-Java Class Mappings

SQL data type Java types

nested tables and VARRAY
named types

oracle.jdbc.OracleArray5

references to named types oracle.jdbc.OracleRef6

1 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.BLOB class is deprecated and
replaced with the oracle.jdbc.OracleBlob interface.

2 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.CLOB class is deprecated and
replaced with the oracle.jdbc.OracleClob interface.

3 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.STRUCT class is deprecated
and replaced with the oracle.jdbc.OracleStruct interface.

4 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.OPAQUE class is deprecated
and replaced with the oracle.jdbc.OracleOpaque interface.

5 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.ARRAY class is deprecated and
replaced with the oracle.jdbc.OracleArray interface.

6 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.REF class is deprecated and
replaced with the oracle.jdbc.OracleRef interface.

Note:

• The type UROWID is not supported.

• The oracle.sql.Datum class is abstract. The value passed to a
parameter of type oracle.sql.Datum must be of the Java type
corresponding to the underlying SQL type. Likewise, the value returned
by a method with return type oracle.sql.Datum must be of the Java type
corresponding to the underlying SQL type.

A.2 Supported SQL and PL/SQL Data Types
The tables in this section list SQL and PL/SQL data types, and Oracle JDBC driver
support for them. The following table describes Oracle JDBC driver support for SQL
data types.

Table A-2 Support for SQL Data Types

SQL Data Type Supported by JDBC Drivers?

BFILE yes

BLOB yes

CHAR yes

CLOB yes

DATE yes

NCHAR no1

NCHAR VARYING no

Appendix A
Supported SQL and PL/SQL Data Types

A-3

Table A-2 (Cont.) Support for SQL Data Types

SQL Data Type Supported by JDBC Drivers?

NUMBER yes

NVARCHAR2 yes2

RAW yes

REF yes

ROWID yes

UROWID no

VARCHAR2 yes

1 The NCHAR type is supported indirectly. There is no corresponding java.sql.Types type, but if your
application calls the formOfUse(NCHAR) method, then this type can be accessed.

2 In JSE 6, the NVARCHAR2 type is supported directly. In J2SE 5.0, the NVARCHAR2 type is supported
indirectly. There is no corresponding java.sql.Types type, but if your application calls the
formOfUse(NCHAR) method, then this type can be accessed.

The following table describes Oracle JDBC support for the ANSI-supported SQL data
types.

Table A-3 Support for ANSI-92 SQL Data Types

ANSI-Supported SQL Data Type Supported by JDBC Drivers?

CHARACTER yes

DEC yes

DECIMAL yes

DOUBLE PRECISION yes

FLOAT yes

INT yes

INTEGER yes

NATIONAL CHARACTER no

NATIONAL CHARACTER VARYING no

NATIONAL CHAR yes

NATIONAL CHAR VARYING no

NCHAR yes

NCHAR VARYING no

NUMERIC yes

REAL yes

SMALLINT yes

VARCHAR yes

The following table describes Oracle JDBC driver support for SQL User-Defined types.

Appendix A
Supported SQL and PL/SQL Data Types

A-4

Table A-4 Support for SQL User-Defined Types

SQL User-Defined type Supported by JDBC Drivers?

OPAQUE yes

Reference types yes

Object types (JAVA_OBJECT) yes

Nested table types and VARRAY types yes

The following table describes Oracle JDBC driver support for PL/SQL data types. The
PL/SQL data types include the following categories:

• Scalar types

• Scalar character types, which includes DATE data type

• Composite types

• Reference types

• Large object (LOB) types

Table A-5 Support for PL/SQL Data Types

PL/SQL Data Type Supported by JDBC Drivers?

Scalar Types:

BINARY INTEGER yes

DEC yes

DECIMAL yes

DOUBLE PRECISION yes

FLOAT yes

INT yes

INTEGER yes

NATURAL yes

NATURALn no

NUMBER yes

NUMERIC yes

PLS_INTEGER yes

POSITIVE yes

POSITIVEn no

REAL yes

SIGNTYPE yes

SMALLINT yes

BOOLEAN yes

Scalar Character Types:

CHAR yes

CHARACTER yes

Appendix A
Supported SQL and PL/SQL Data Types

A-5

Table A-5 (Cont.) Support for PL/SQL Data Types

PL/SQL Data Type Supported by JDBC Drivers?

LONG yes

LONG RAW yes

NCHAR no (see Note)

NVARCHAR2 no (see Note)

RAW yes

ROWID yes

STRING yes

UROWID no

VARCHAR yes

VARCHAR2 yes

DATE yes

Composite Types:

RECORD no

TABLE no

VARRAY yes

Reference Types:

REF CURSOR types yes

object reference types yes

LOB Types:

BFILE yes

BLOB yes

CLOB yes

NCLOB yes

Note:

• The types NATURAL, NATURALn, POSITIVE, POSITIVEn, and SIGNTYPE are
subtypes of BINARY INTEGER.

• The types DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INT, INTEGER,
NUMERIC, REAL, and SMALLINT are subtypes of NUMBER.

• The types NCHAR and NVARCHAR2 are supported indirectly. There is no
corresponding java.sql.Types type, but if your application calls
formOfUse(NCHAR), then these types can be accessed.

Related Topics

• NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property

Appendix A
Supported SQL and PL/SQL Data Types

A-6

A.3 About Using PL/SQL Types
Starting from Oracle Database 12c Release 1 (12.1), you can map schema-level
PL/SQL types as generic java.sql.Struct type and PL/SQL collections as
java.sql.Array types. So, instead of creating schema-level types that are mapped to
PL/SQL package types for binding, you can describe and bind PL/SQL types using
only the JDBC APIs.

For example, you can call the Connection.createStruct(type_name) method to first
create a descriptor that can be used to describe a PL/SQL type and then to create a
new STRUCT representation of this type on the client. In Oracle Database 12c Release
1 (12.1), you can reuse this API by specifying type_name as
“schema.package.typename" or “package.typename".

All PL/SQL package types are mapped to a system-wide unique name that can be
used by JDBC to retrieve the server-side type metadata. The name is in the following
form:

[SCHEMA.]<PACKAGE>.<TYPE>

Note:

If the schema is the same as the package name, and if there is a type with
the same name as the PL/SQL type, then it will not be able to identify an
object with the two part name format, that is, <package>.<type>. In such
cases, you must use three part names <schema>.<package>.<type>.

The following code snippet explains how to bind types declared in PL/SQL packages:

/*

Perform the following SQL operations prior to running this sample

conn HR/hr;
create or replace package TEST_PKG is
 type V_TYP is varray(10) of varchar2(200);
 type R_TYP is record(c1 pls_integer, c2 varchar2(100));
 procedure VARR_PROC(p1 in V_TYP, p2 OUT V_TYP);
 procedure REC_PROC(p1 in R_TYP, p2 OUT R_TYP);
end;
/
create or replace package body TEST_PKG is
 procedure VARR_PROC(p1 in V_TYP, p2 OUT V_TYP) is
 begin
 p2 := p1;
 end;
 procedure REC_PROC(p1 in R_TYP, p2 OUT R_TYP) is
 begin
 p2 := p1;
 end;
end;
/
*/

Appendix A
About Using PL/SQL Types

A-7

import java.sql.Array;
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Struct;
import java.sql.Types;

import oracle.jdbc.OracleConnection;
public class PLSQLTypesSample
{
 public static void main(String[] args) throws SQLException
 {
 System.out.println("begin...");
 Connection conn = null;
 oracle.jdbc.pool.OracleDataSource ods = new oracle.jdbc.pool.OracleDataSource();
 ods.setURL("jdbc:oracle:oci:localhost:5521:orcl");
 ods.setUser("HR");
 ods.setPassword("hr");
 //get connection
 conn = ods.getConnection();

 //call procedure TEST_PKG.VARR_PROC
 CallableStatement cstmt = null;
 try {
 cstmt = conn.prepareCall("{ call TEST_PKG.VARR_PROC(?,?) }");
 //PLSQL VARRAY type binding
 Array arr = ((OracleConnection)conn).createArray("TEST_PKG.V_TYP", new String[]
{"A", "B"});
 cstmt.setArray(1, arr);
 cstmt.registerOutParameter(2, Types.ARRAY, "TEST_PKG.V_TYP");
 cstmt.execute();
 //get PLSQL VARRAY type out parameter value
 Array outArr = cstmt.getArray(2);
 //...
 }
 catch(Exception e) {
 e.printStackTrace();
 }finally {
 if (cstmt != null)
 cstmt.close();
 }

 //call procedure TEST_PKG.REC_PROC
 try {
 cstmt = conn.prepareCall("{ call TEST_PKG.REC_PROC(?,?) }");
 //PLSQL RECORD type binding
 Struct struct = conn.createStruct("TEST_PKG.R_TYP", new Object[]{12345, "B"});
 cstmt.setObject(1, struct);
 cstmt.registerOutParameter(2, Types.STRUCT, "TEST_PKG.R_TYP");
 cstmt.execute();
 //get PLSQL RECORD type out parameter value
 Struct outStruct = (Struct)cstmt.getObject(2);
 //...
 }
 catch(Exception e) {
 e.printStackTrace();
 }finally {
 if (cstmt != null)
 cstmt.close();
 }

Appendix A
About Using PL/SQL Types

A-8

 if (conn != null)
 conn.close();

 System.out.println("done!");
 }
}

Creating Java level objects for each row using %ROWTYPE Attribute

You can create Java-level objects using the %ROWTYPE attribute. In this case, each row
of the table is created as a java.sql.Struct object. For example, if you have a
package pack1 with the following specification:

See Also:

Oracle Database PL/SQL Language Reference for more information about
the %ROWTYPE attribute

CREATE OR REPLACE PACKAGE PACK1 AS
 TYPE EMPLOYEE_ROWTYPE_ARRAY IS TABLE OF EMPLOYEES%ROWTYPE;
END PACK1;
/

The following code snippet shows how you can retrieve the value of the
EMPLOYEE_ROWTYPE_ARRAY array using JDBC APIs:

This example returns a java.sql.Array of java.sql.Struct objects, where every
Struct element represents one row of the EMPLOYEES table.

Example A-1 Creating Struct Objects for Database Table Rows

CallableStatement cstmt = conn.prepareCall("BEGIN SELECT * BULK COLLECT INTO :1 FROM
EMPLOYEE; END;");
cstmt.registerOutParameter(1,OracleTypes.ARRAY, "PACK1.EMPLOYEE_ROWTYPE_ARRAY");
cstmt.execute();
Array a = cstmt.getArray(1);

A.4 Using Embedded JDBC Escape Syntax
Oracle JDBC drivers support some embedded JDBC escape syntax, which is the
syntax that you specify between curly braces. The current support is basic.

Note:

JDBC escape syntax was previously known as SQL92 Syntax or SQL92
escape syntax.

This section describes the support offered by the drivers for the following constructs:

• Time and Date Literals

• Scalar Functions

Appendix A
Using Embedded JDBC Escape Syntax

A-9

• LIKE Escape Characters

• MATCH_RECOGNIZE Clause

• Outer Joins

• Function Call Syntax

Where driver support is limited, these sections also describe possible workarounds.

Disabling Escape Processing

The processing for JDBC escape syntax is enabled by default, which results in the
JDBC driver performing escape substitution before sending the SQL code to the
database. If you want the driver to use regular Oracle SQL syntax, which is more
efficient than JDBC escape syntax processing, then use this statement:

stmt.setEscapeProcessing(false);

A.4.1 Time and Date Literals
Databases differ in the syntax they use for date, time, and timestamp literals. JDBC
supports dates and times written only in a specific format. This section describes the
formats you must use for date, time, and timestamp literals in SQL statements.

A.4.1.1 Date Literals
The JDBC drivers support date literals in SQL statements written in the format:

{d 'yyyy-mm-dd'}

Where yyyy-mm-dd represents the year, month, and day. For example:

{d '1995-10-22'}

The JDBC drivers will replace this escape clause with the equivalent Oracle
representation: "22 OCT 1995".

The following code snippet contains an example of using a date literal in a SQL
statement.

// Connect to the database
// You can put a database name after the @ sign in the connection URL.
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:oci:@");
ods.setUser("HR");
ods.setPassword("hr");
Connection conn = ods.getConnection();

// Create a Statement
Statement stmt = conn.createStatement ();

// Select the first name column from the employees table where the hire date is
Jan-23-1982
ResultSet rset = stmt.executeQuery
 ("SELECT first_name FROM employees WHERE hire_date = {d
'1982-01-23'}");

// Iterate through the result and print the employee names
while (rset.next ())
 System.out.println (rset.getString (1));

Appendix A
Using Embedded JDBC Escape Syntax

A-10

A.4.1.2 Time Literals
The JDBC drivers support time literals in SQL statements written in the format:

{t 'hh:mm:ss'}

where, hh:mm:ss represents the hours, minutes, and seconds. For example:

{t '05:10:45'}

The JDBC drivers will replace this escape clause with the equivalent Oracle
representation: "05:10:45".

If the time is specified as:

{t '14:20:50'}

Then the equivalent Oracle representation would be "14:20:50", assuming the server is
using a 24-hour clock.

This code snippet contains an example of using a time literal in a SQL statement.

ResultSet rset = stmt.executeQuery
 ("SELECT first_name FROM employees WHERE hire_date = {t
'12:00:00'}");

A.4.1.3 Timestamp Literals
The JDBC drivers support timestamp literals in SQL statements written in the format:

{ts 'yyyy-mm-dd hh:mm:ss.f...'}

where yyyy-mm-dd hh:mm:ss.f... represents the year, month, day, hours, minutes,
and seconds. The fractional seconds portion (.f...) is optional and can be omitted.
For example: {ts '1997-11-01 13:22:45'} represents, in Oracle format, NOV 01
1997 13:22:45.

This code snippet contains an example of using a timestamp literal in a SQL
statement.

ResultSet rset = stmt.executeQuery
 ("SELECT first_name FROM employees WHERE hire_date = {ts '1982-01-23
12:00:00'}");

Mapping SQL DATE Data type to Java

Oracle Database 8i and earlier versions did not support TIMESTAMP data, but Oracle
DATE data used to have a time component as an extension to the SQL standard. So,
Oracle Database 8i and earlier versions of JDBC drivers mapped oracle.sql.DATE to
java.sql.Timestamp to preserve the time component. Starting with Oracle Database
9.0.1, TIMESTAMP support was included and 9i JDBC drivers started mapping
oracle.sql.DATE to java.sql.Date. This mapping was incorrect as it truncated the
time component of Oracle DATE data. To overcome this problem, Oracle Database 11g
Release 1 introduced a new flag mapDateToTimestamp. The default value of this flag is
true, which means that by default the drivers will correctly map oracle.sql.DATE to
java.sql.Timestamp, retaining the time information. If you still want the incorrect but
10g compatible oracle.sql.DATE to java.sql.Date mapping, then you can get it by
setting the value of mapDateToTimestamp flag to false.

Appendix A
Using Embedded JDBC Escape Syntax

A-11

Note:

• Since Oracle Database 11g, if you have an index on a DATE column to
be used by a SQL query, then to obtain faster and accurate results, you
must use the setObject method in the following way:

Date d = parseIsoDate(val);
Timestamp t = new Timestamp(d.getTime());
stmt.setObject(pos, new oracle.sql.DATE(t, (Calendar)UTC_CAL.clone()));

This is because if you use the setDate method, then the time component
of the Oracle DATE data will be lost and if you use the setTimestamp
method, then the index on the DATE column will not be used.

• To overcome the problem of oracle.sql.DATE to java.sql.Date
mapping, Oracle Database 9.2 introduced a flag, V8Compatible. The
default value of this flag was false, which allowed the mapping of Oracle
DATE data to java.sql.Date data. But, users could retain the time
component of the Oracle DATE data by setting the value of this flag to
true. This flag is desupported since 11g because it controlled Oracle
Database 8i compatibility, which is no longer supported.

A.4.2 Scalar Functions
Oracle JDBC drivers do not support all scalar functions. To find out which functions the
drivers support, use the following methods supported by the Oracle-specific
oracle.jdbc.OracleDatabaseMetaData class and the standard Java
java.sql.DatabaseMetadata interface:

• getNumericFunctions()

Returns a comma-delimited list of math functions supported by the driver. For
example, ABS, COS, SQRT.

• getStringFunctions()

Returns a comma-delimited list of string functions supported by the driver. For
example, ASCII, LOCATE.

• getSystemFunctions()

Returns a comma-delimited list of system functions supported by the driver. For
example, DATABASE, USER.

• getTimeDateFunctions()

Returns a comma-delimited list of time and date functions supported by the driver.
For example, CURDATE, DAYOFYEAR, HOUR.

Note:

Oracle JDBC drivers support fn, the function keyword.

Appendix A
Using Embedded JDBC Escape Syntax

A-12

A.4.3 LIKE Escape Characters
The characters % and _ have special meaning in SQL LIKE clauses. You use % to
match zero or more characters and _ to match exactly one character. If you want to
interpret these characters literally in strings, then you precede them with a special
escape character. For example, if you want to use ampersand (&) as the escape
character, then you identify it in the SQL statement as:

Statement stmt = conn.createStatement ();

// Select the empno column from the emp table where the ename starts with '_'
ResultSet rset = stmt.executeQuery
 ("SELECT empno FROM emp WHERE ename LIKE '&_%' {ESCAPE '&'}");

// Iterate through the result and print the employee numbers
while (rset.next ())
 System.out.println (rset.getString (1));

Note:

If you want to use the backslash character (\) as an escape character, then
you must enter it twice, that is, \\. For example:

ResultSet rset = stmt.executeQuery("SELECT empno FROM emp
 WHERE ename LIKE '_%' {escape '\\'}");

A.4.4 MATCH_RECOGNIZE Clause
The ? character is used as a token in MATCH_RECOGNIZE clause in Oracle Database 11g
and later versions. As the JDBC standard defines the ? character as a parameter
marker, the JDBC Driver and the Server SQL Engine cannot distinguish between
different uses of the same token.

In earlier versions of JDBC Driver, if you want to interpret the ? character as a
MATCH_RECOGNIZE token and not as a parameter marker, then you must use a
Statement instead of a PreparedStatement and disable escape processing. However,
starting from Oracle Database 12c Release 1 (12.1.0.2), you can use the '{\\ ... \
\}' syntax while using the ? character, so that the JDBC driver does not process it as
a parameter marker and allows the SQL engine to process it. The following code
snippet shows how to use the '{\\ ... \\}' syntax:

 String sql =
 "select T.firstW, T.lastZ, ? " + // use of parameter marker
 "from tkpattern_S11 " +
 "MATCH_RECOGNIZE (" +
 " MEASURES A.c1 as firstW, last(Z.c1) as lastZ " +
 " ALL MATCHES " +
 " {\\ PATTERN(A? X*? Y+? Z??)\\} " + // use of escape sequence
 " DEFINE " +
 " X as X.c2 > prev(X.c2), " +
 " Y as Y.c2 < prev(Y.c2), " +
 " Z as Z.c2 > prev(Z.c2)" +
 ") as T";

Appendix A
Using Embedded JDBC Escape Syntax

A-13

 PreparedStatement ps = conn.prepareStatatement(sql);
 ps.setString(1, "test");
 ResultSet rs = ps.executeQuery();

Related Topics

• Using Embedded JDBC Escape Syntax

A.4.5 Outer Joins
Oracle JDBC drivers do not support the outer join syntax. The workaround is to use
Oracle outer join syntax:

Instead of:

Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery
 ("SELECT ename, dname
 FROM {OJ dept LEFT OUTER JOIN emp ON dept.deptno = emp.deptno}
 ORDER BY ename");

Use Oracle SQL syntax:

Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery
 ("SELECT ename, dname
 FROM emp b, dept a WHERE a.deptno = b.deptno(+)
 ORDER BY ename");

A.4.6 Function Call Syntax
Oracle JDBC drivers support the following procedure and function call syntax:

Procedure calls:

{ call procedure_name (argument1, argument2,...) }

Function calls:

{ ? = call procedure_name (argument1, argument2,...) }

A.4.7 JDBC Escape Syntax to Oracle SQL Syntax Example
You can write a simple program to translate JDBC escape syntax to Oracle SQL
syntax. The following program prints the comparable Oracle SQL syntax for
statements using JDBC escape syntax for function calls, date literals, time literals, and
timestamp literals. In the program, the oracle.jdbc.OracleSql class parse() method
performs the conversions.

public class Foo
{
 static oracle.jdbc.OracleDriver driver = new oracle.jdbc.OracleDriver();
 public static void main (String args[]) throws Exception
 {
 show ("{call foo(?, ?)}");
 show ("{? = call bar (?, ?)}");
 show ("{d '1998-10-22'}");
 show ("{t '16:22:34'}");
 show ("{ts '1998-10-22 16:22:34'}");

Appendix A
Using Embedded JDBC Escape Syntax

A-14

 }

 public static void show (String s) throws Exception
 {
 System.out.println (s + " => " +
 driver.processSqlEscapes(s));
 }
}

The following code is the output that prints the comparable SQL syntax.

{call foo(?, ?)} => BEGIN foo(:1, :2); END;
{? = call bar (?, ?)} => BEGIN :1 := bar (:2, :3); END;
{d '1998-10-22'} => TO_DATE ('1998-10-22', 'YYYY-MM-DD')
{t '16:22:34'} => TO_DATE ('16:22:34', 'HH24:MI:SS')
{ts '1998-10-22 16:22:34'} => TO_TIMESTAMP ('1998-10-22 16:22:34', 'YYYY-MM-DD
HH24:MI:SS.FF')

A.5 Oracle JDBC Notes and Limitations
The following limitations exist in the Oracle JDBC implementation, but all of them are
either insignificant or have easy workarounds. This section covers the following topics:

• CursorName

• JDBC Outer Join Escapes

• IEEE 754 Floating Point Compliance

• Catalog Arguments to DatabaseMetaData Calls

• SQLWarning Class

• Executing DDL Statements

• Binding Named Parameters

A.5.1 CursorName
Oracle JDBC drivers do not support the getCursorName and setCursorName methods,
because there is no convenient way to map them to Oracle constructs. Oracle
recommends using ROWID instead.

Related Topics

• Oracle ROWID Type

A.5.2 JDBC Outer Join Escapes
Oracle JDBC drivers do not support JDBC outer join escapes. Use Oracle SQL syntax
with + instead.

Related Topics

• Using Embedded JDBC Escape Syntax

A.5.3 IEEE 754 Floating Point Compliance
The arithmetic for the Oracle NUMBER type does not comply with the IEEE 754 standard
for floating-point arithmetic. Therefore, there can be small disagreements between the

Appendix A
Oracle JDBC Notes and Limitations

A-15

results of computations performed by Oracle and the same computations performed
by Java.

Oracle stores numbers in a format compatible with decimal arithmetic and guarantees
38 decimal digits of precision. It represents zero, minus infinity, and plus infinity
exactly. For each positive number it represents, it represents a negative number of the
same absolute value.

It represents every positive number between 10-30 and (1 – 10-38) * 10126 to full 38-digit
precision.

A.5.4 Catalog Arguments to DatabaseMetaData Calls
Certain DatabaseMetaData methods define a catalog parameter. This parameter is
one of the selection criteria for the method. Oracle does not have multiple catalogs,
but it does have packages.

Related Topics

• About Reporting DatabaseMetaData TABLE_REMARKS

A.5.5 SQLWarning Class
The java.sql.SQLWarning class provides information about a database access
warning. Warnings typically contain a description of the warning and a code that
identifies the warning. Warnings are silently chained to the object whose method
caused it to be reported. Oracle JDBC drivers generally do not support SQLWarning. As
an exception to this, scrollable result set operations do generate SQL warnings, but
the SQLWarning instance is created on the client, not in the database.

Related Topics

• About Processing SQL Exceptions

A.5.6 Executing DDL Statements
You must execute Data Definition Language (DDL) statements with Statement objects.
If you use PreparedStatements objects or CallableStatements objects, then the DDL
statement takes effect only on the first execution. This can cause unexpected behavior
if the SQL statements are in a statement cache.

A.5.7 Binding Named Parameters
Binding by name is not supported when using the setXXX methods. Under certain
circumstances, previous versions of Oracle JDBC drivers have allowed binding
statement variables by name when using the setXXX methods. In the following
statement, the named variable EmpId would be bound to the integer 314159.

PreparedStatement p = conn.prepareStatement
 ("SELECT name FROM emp WHERE id = :EmpId");
 p.setInt(1, 314159);

This capability to bind by name using the setXXX methods is not part of the JDBC
specification, and Oracle does not support it. The JDBC drivers can throw a
SQLException or produce unexpected results. Starting from Oracle Database 10g
JDBC drivers, bind by name is supported using the setXXXAtName methods.

Appendix A
Oracle JDBC Notes and Limitations

A-16

The bound values are not copied by the drivers until you call the execute method. So,
changing the bound value before calling the execute method could change the bound
value. For example, consider the following code snippet:

PreparedStatement p;
.......
Date d = new Date(1181676033917L);
p.setDate(1, d);
d.setTime(0);
p.executeUpdate();

This code snippet inserts Date(0) in the database instead of Date(1181676033917L)
because the bound values are not copied by JDBC driver implementation for
performance reasons.

Related Topics

• Interface oracle.jdbc.OracleCallableStatement

• Interface oracle.jdbc.OraclePreparedStatement

Appendix A
Oracle JDBC Notes and Limitations

A-17

B
Oracle RAC Fast Application Notification

Starting from Oracle Database 12c Release 1 (12.1), the Oracle RAC Fast Application
Notification (FAN) APIs provide an alternative for taking advantage of the high-
availability (HA) features of Oracle Database, if you do not use Universal Connection
Pool or Oracle WebLogic Server with Active Grid Link (AGL).

This appendix covers the following topics:

• Overview of Oracle RAC Fast Application Notification

• Installing and Configuring Oracle RAC Fast Application Notification

• Using Oracle RAC Fast Application Notification

• Implementing a Connection Pool

This feature depends on the Oracle Notification System (ONS) message transport
mechanism. This feature requires configuring your system, servers, and clients to use
ONS.

For using Oracle RAC Fast Application Notification, the simplefan.jar file must be
present in the CLASSPATH, and either the ons.jar file must be present in the CLASSPATH
or an Oracle Notification Services (ONS) client must be installed and running in the
client system.

B.1 Overview of Oracle RAC Fast Application Notification
The Oracle RAC Fast Application Notification (FAN) feature provides a simplified API
for accessing FAN events through a callback mechanism. This mechanism enables
third-party drivers, connection pools, and containers to subscribe, receive and process
FAN events. These APIs are referred to as Oracle RAC FAN APIs in this appendix.

The Oracle RAC FAN APIs provide FAN event notification for developing more
responsive applications that can take full advantage of Oracle Database HA features.
If you do not want to use Universal Connection Pool, but want to work with FAN events
implementing your own connection pool, then you should use Oracle RAC Fast
Application Notification.

Note:

• If you do not want to implement your own connection pool, then you
should use Oracle Universal Connection Pool to get all the advantages
of Oracle RAC Fast Application Notification, along with many additional
benefits.

• Starting from Oracle Database 12c Release 1 (12.1), implicit connection
cache (ICC) is desupported. Oracle recommends to use Universal
Connection Pool instead.

B-1

Your applications are enabled to respond to FAN events in the following way:

• Listening for Oracle RAC service down and node down events.

• Listening for Oracle RAC service up events representing any Oracle RAC or
Global data Service (GDS) start or restart. For these UP events, FAN parameter
status is UP and event_type is one of the following: database, instance, service,
or servicemember.

• Supporting FAN ONS event syntax and fields for both Oracle Database Release
12c and earlier releases, for example, the event_type and timezone fields added
to every event, the db_domain field added to every event other than node or public-
network events, the percentf field added to Run-Time Load Balancing (RLB)
events, and so on.

• Listening for load balancing advisory events and responding to them.

This feature exposes the FAN events, which are the notifications sent by a cluster
running Oracle RAC, to inform the subscribers about an event happening at the
service level or the node level. The supported FAN events are the following:

• Service up

The service up event notifies the connection pool that a new instance is available
for use, allowing sessions to be created on the new instance. The ServiceUpEvent
Client API is supported in the current release of the Oracle RAC FAN APIs, that is,
in the simplefan.jar file.

• Service down

The service down events notify that the managed resources are down and
currently not available for access. There are two types of service down events:

– Events indicating that a particular instance of a service is down and the
instance is no longer able to accept work.

– Events indicating that all-but-one instances of a service are down and the
service is no longer able to accept work.

• Node down

The node down events notify that the Oracle RAC node identified by the host
identifier is down and not reachable. The cluster sends node down events when a
node is no longer able to accept work.

• Planned down

Planned down events include all the down events, except node down event. These
events have the following two fields set: status=down and reason=user.

• Load balancing advisory

The load balancing advisory events provide metrics for load balancing algorithms.
Load balancing advisories are sent regularly to inform subscribers of the
recommended distribution of work among the available nodes.

Appendix B
Overview of Oracle RAC Fast Application Notification

B-2

Note:

If you want to implement your own connection pool, only then you should use
Oracle RAC Fast Application Notification. Otherwise, you should use Oracle
Universal Connection Pool to get all the advantages of Oracle RAC Fast
Application Notification, along with many additional benefits.

Related Topics

• Oracle Universal Connection Pool Developer’s Guide

B.2 Installing and Configuring Oracle RAC Fast Application
Notification

You can install the Oracle RAC FAN APIs by performing the following steps:

1. Download the simplefan.jar file from the following link

http://www.oracle.com/technetwork/database/application-development/jdbc/jdbc-ucp-122-3110062.html

2. Add the simplefan.jar file to the classpath.

3. Perform the following in your Java code:

a. Get an instance of the FanManager class by using the getInstance method.

b. Configure the event daemon using the configure method of the FanManager
class. The configure method sets the following properties:

onsNodes: A comma separated list of host:port pairs of ONS daemons that
the ONS runtime in this Java VM should communicate with. The host in a
host:port pair is the host name of a system running the ONS daemon. The
port is the local port configuration parameter for that daemon.

onsWalletFile: The path name of the ONS wallet file. The wallet file is the
path to a local wallet file used by SSL to store SSL certificates. Same as wallet
file configuration parameter to ONS daemon.

onsWalletPassword: The password for accessing the ONS wallet file.

See Also:

• For a detailed description of the Oracle RAC FAN APIs, refer to Oracle
Database RAC FAN Events Java API Reference.

• Oracle Universal Connection Pool Developer’s Guide

B.3 Using Oracle RAC Fast Application Notification
The following code snippet explains how to handle FAN down events. This example
code prints the event data to the standard output device.

Appendix B
Installing and Configuring Oracle RAC Fast Application Notification

B-3

http://www.oracle.com/technetwork/database/application-development/jdbc/jdbc-ucp-122-3110062.html

This example code demonstrates how to use Oracle RAC FAN APIs by overloading
the handleFanEvent method to accept different FAN event notifications as arguments.
The example code also displays event data such as:

• Name of the system sending the FAN event notification

• Timestamp of the FAN event notification

• Load status of the FAN event notification

Example B-1 Example of Sample Code Using Oracle RAC FAN API for FAN
Down Events

...

...Properties props = new Properties();
props.putProperty(“serviceName", “gl");
FanSubscription sub = FanManager.getInstance().subscribe(props);
sub.addListener(new FanEventListener()) {
 public void handleFanEvent(ServiceDownEvent se) {
 try {
 System.out.println(event.getTimestamp());
 System.out.println(event.getServiceName());
 System.out.println(event.getDatabaseUniqueName());
 System.out.println(event.getReason());
 ServiceMemberEvent me = se.getServiceMemberEvent();
 if (me != null) {
 System.out.println(me.getInstanceName());
 System.out.println(me.getNodeName());
 System.out.println(me.getServiceMemberStatus());
 }
 ServiceCompositeEvent ce = se.getServiceCompositeEvent();
 if (ce != null) {
 System.out.println(ce.getServiceCompositeStatus());
 }
 }
 catch (Throwable t) {
 // handle all exceptions and errors
 t.printStackTrace(System.err);
 }
 }
 public void handleFanEvent(NodeDownEvent ne) {
 try {
 System.out.println(event.getTimestamp());
 System.out.println(ne.getNodeName());
 System.out.println(ne.getIncarnation());
 }
 catch (Throwable t) {
 // handle all exceptions and errors
 t.printStackTrace(System.err);
 }
 }
 public void handleFanEvent(LoadAdvisoryEvent le) {
 try {
 System.out.println(event.getTimestamp());
 System.out.println(le.getServiceName());
 System.out.println(le.getDatabaseUniqueName());
 System.out.println(le.getInstanceName());
 System.out.println(le.getPercent());
 System.out.println(le.getServiceQuality());
 System.out.println(le.getLoadStatus());
 }
 catch (Throwable t) {

Appendix B
Using Oracle RAC Fast Application Notification

B-4

 // handle all exceptions and errors
 t.printStackTrace(System.err);
 }
 }
});

Example B-2 Example of Sample Code Using Oracle RAC FAN API for FAN Up
Events

The following code snippet explains how to use Oracle RAC Fast Application
Notification for service up events. The code uses the new Oracle RAC FAN APIs
introduced in Oracle Database 12c Release 2 (12.2.0.1), namely, FanUpEventListener
interface that extends the FanEventListener interface and ServiceUpEvent. You must
implement the FanUpEventListener interface in the client application in the similar way
you implement the FanEventListener interface.

import oracle.simplefan.*;

...
FanEventListener fanListener = new FanUpEventListener() {
 public void handleEvent(ServiceUpEvent event) { }

// Specify the next action here, when the node comes up
public void handleEvent(NodeUpEvent event) { }

}
FanManager fanMngr = FanManager.getInstance();
Properties onsProps = new Properties();
onsProps.setProperty("onsNodes",);
fanMngr.configure(onsProps);

Properties subscriptionProps = new Properties();
subscriptionProps.setProperty("serviceName",);
fanSubscription = fanMngr.subscribe(subscriptionProps);
fanSubscription.addListener(fanListener);
...

B.4 Implementing a Connection Pool
You must implement your own connection pool for using Oracle RAC FAN APIs.
Consider the following points before you implement a connection pool using the Oracle
RAC FAN APIs:

• Oracle RAC FAN APIs provide a subset of FAN events.

• Oracle RAC FAN APIs support only ONS events. If you want your application to
support corresponding supercluster events, then you may require additions to the
subscription properties.

Appendix B
Implementing a Connection Pool

B-5

C
JDBC Coding Tips

This appendix describes methods to optimize a Java Database Connectivity (JDBC)
application. It includes the following topics:

• JDBC and Multithreading

• Performance Optimization of JDBC Programs

• Transaction Isolation Levels and Access Modes in JDBC

C.1 JDBC and Multithreading
Oracle JDBC drivers provide full support for, and are highly optimized for, applications
that use Java multithreading. Controlled serial access to a connection, such as that
provided by connection caching, is both necessary and encouraged. However, Oracle
strongly discourages sharing a database connection among multiple threads. Avoid
allowing multiple threads to access a connection simultaneously. If multiple threads
must share a connection, use a disciplined begin-using/end-using protocol.

Keep the following points in mind while working on multithreaded applications:

• Use the Connection object as a local variable.

• Close the connection in the finally block before exiting the method. For example:

Connection conn = null;
try
{
 ...
}
finally
{
 if(conn != null) conn.close();
}

• Do not share Connection objects between threads.

• Never synchronize on JDBC objects because it is done internally by the driver.

• Use the Statement.setQueryTimeout method to set the time to execute a query
instead of cancelling the long-running query from a different thread.

• Use the Statement.cancel method for SQL operations like SELECT, UPDATE, or
DELETE.

• Use the Connection.cancel method for SQL operations like COMMIT, ROLLBACK,
and so on.

• Do not use the Thread.interrupt method.

C-1

C.2 Performance Optimization of JDBC Programs
You can significantly enhance the performance of your JDBC programs by using any
of these features:

• Disabling Auto-Commit Mode

• Standard Fetch Size and Oracle Row Prefetching

• About Setting the Session Data Unit Size

• JDBC Update Batching

• Statement Caching

• Mapping Between Built-in SQL and Java Types

C.2.1 Disabling Auto-Commit Mode
Auto-commit mode indicates to the database whether to issue an automatic COMMIT
operation after every SQL operation. Being in auto-commit mode can be expensive in
terms of time and processing effort if, for example, you are repeating the same
statement with different bind variables.

By default, new connection objects are in auto-commit mode. However, you can
disable auto-commit mode with the setAutoCommit method of the connection object,
either java.sql.Conection or oracle.jdbc.OracleConnection.

In auto-commit mode, the COMMIT operation occurs either when the statement
completes or the next execute occurs, whichever comes first. In the case of
statements returning a ResultSet object, the statement completes when the last row
of the Result Set has been retrieved or when the Result Set has been closed. In more
complex cases, a single statement can return multiple results as well as output
parameter values. Here, the COMMIT occurs when all results and output parameter
values have been retrieved.

If you disable auto-commit mode with a setAutoCommit(false) call, then you must
manually commit or roll back groups of operations using the commit or rollback
method of the connection object.

Example

The following example illustrates loading the driver and connecting to the database.
Because new connections are in auto-commit mode by default, this example shows
how to disable auto-commit. In the example, conn represents the Connection object,
and stmt represents the Statement object.

// Connect to the database
// You can put a database host name after the @ sign in the connection URL.
 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:oci:@");
 ods.setUser("HR");
 ods.setPassword("hr");
 Connection conn = ods.getConnection();

// It's faster when auto commit is off
conn.setAutoCommit (false);

Appendix C
Performance Optimization of JDBC Programs

C-2

// Create a Statement
Statement stmt = conn.createStatement ();
...

C.2.2 Standard Fetch Size and Oracle Row Prefetching
Oracle JDBC connection and statement objects allow you to specify the number of
rows to prefetch into the client with each trip to the database while a result set is being
populated during a query. You can set a value in a connection object that affects each
statement produced through that connection, and you can override that value in any
particular statement object. The default value in a connection object is 10. Prefetching
data into the client reduces the number of round-trips to the server.

Similarly, and with more flexibility, JDBC 2.0 enables you to specify the number of
rows to fetch with each trip, both for statement objects (affecting subsequent queries)
and for result set objects (affecting row refetches). By default, a result set uses the
value for the statement object that produced it. If you do not set the JDBC 2.0 fetch
size, then the Oracle connection row-prefetch value is used by default.

Related Topics

• Row Fetch Size

C.2.3 About Setting the Session Data Unit Size
Session data unit (SDU) is a buffer that Oracle Net uses to place data before
transmitting it across the network. Oracle Net sends the data in the buffer either when
the request is completed or when it is full.

You can configure the SDU and obtain the following benefits, among others:

• Reduction in the time required to transmit a SQL query and result across the
network

• Transmission of larger chunks of data

Note:

The footprint of the client and the server process increase if you set a bigger
SDU size.

See Also:

Oracle Database Net Services Administrator's Guide

This section describes the following:

• About Setting the SDU Size for the Database Server

• About Setting the SDU Size for JDBC Thin Client

Appendix C
Performance Optimization of JDBC Programs

C-3

C.2.3.1 About Setting the SDU Size for the Database Server
To set the SDU size for the database server, configure the DEFAULT_SDU_SIZE
parameter in the sqlnet.ora file.

C.2.3.2 About Setting the SDU Size for JDBC OCI Client
The JDBC OCI client uses Oracle Net layer. So, you can set the SDU size for the
JDBC OCI client by configuring the DEFAULT_SDU_SIZE parameter in the sqlnet.ora
file.

C.2.3.3 About Setting the SDU Size for JDBC Thin Client
You can set the SDU size for JDBC thin client by specifying it in the DESCRIPTION
parameter for a particular connection descriptor.

sales.example.com=
(DESCRIPTION=
 (SDU=11280)
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales-server)(PORT=5221))
 (CONNECT_DATA=
 (SERVICE_NAME=sales.example.com))
)

C.2.4 JDBC Update Batching
Oracle JDBC drivers enable you to accumulate INSERT, DELETE, and UPDATE operations
of prepared statements at the client and send them to the server in batches. This
feature reduces round-trips to the server.

Note:

Oracle recommends to keep the batch sizes in the range of 100 or less.
Larger batches provide little or no performance improvement and may
actually reduce performance due to the client resources required to handle
the large batch.

C.2.5 Statement Caching
Statement caching improves performance by caching executable statements that are
used repeatedly, such as in a loop or in a method that is called repeatedly.
Applications use the statement cache to cache statements associated with a particular
physical connection. When you enable Statement caching, a Statement object is
cached when you call the close method. Because each physical connection has its
own cache, multiple caches can exist if you enable Statement caching for multiple
physical connections.

Appendix C
Performance Optimization of JDBC Programs

C-4

Note:

The Oracle JDBC drivers are optimized for use with the Oracle Statement
cache. Oracle strongly recommends that you use the Oracle Statement
cache (implicit or explicit).

When you enable Statement caching on a connection cache, the logical connections
benefit from the Statement caching that is enabled on the underlying physical
connection. If you try to enable Statement caching on a logical connection held by a
connection cache, then this will throw an exception.

Related Topics

• Statement and Result Set Caching

C.2.6 Mapping Between Built-in SQL and Java Types
The SQL built-in types are those types with system-defined names, such as NUMBER,
and CHAR, as opposed to the Oracle objects, varray, and nested table types, which
have user-defined names. In JDBC programs that access data of built-in SQL types,
all type conversions are unambiguous, because the program context determines the
Java type to which a SQL datum will be converted.

Table C-1 Mapping of SQL Data Types to Java Classes that Represent SQL
Data Types

SQL Data Type ORACLE Mapping - Java Classes Representing SQL Data
Types

CHAR oracle.sql.CHAR

VARCHAR2 oracle.sql.CHAR

DATE oracle.sql.DATE

DECIMAL oracle.sql.NUMBER

DOUBLE PRECISION oracle.sql.NUMBER

FLOAT oracle.sql.NUMBER

INTEGER oracle.sql.NUMBER

REAL oracle.sql.NUMBER

RAW oracle.sql.RAW

LONG RAW oracle.sql.RAW

REF CURSOR java.sql.ResultSet

CLOB LOCATOR oracle.jdbc.OracleClob1

BLOB LOCATOR oracle.jdbc.OracleBlob2

BFILE oracle.sql.BFILE

nested table oracle.jdbc.OracleArray3

varray oracle.jdbc.OracleArray

Appendix C
Performance Optimization of JDBC Programs

C-5

Table C-1 (Cont.) Mapping of SQL Data Types to Java Classes that Represent
SQL Data Types

SQL Data Type ORACLE Mapping - Java Classes Representing SQL Data
Types

SQL object value If there is no entry for the object value in the type map:

• oracle.jdbc.OracleStruct4

If there is an entry for the object value in the type map:

• customized Java class

REF to SQL object type class that implements oracle.sql.SQLRef, typically by
implementing oracle.jdbc.OracleRef5

1 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.CLOB class is deprecated and
replaced with the oracle.jdbc.OracleClob interface.

2 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.BLOB class is deprecated and
replaced with the oracle.jdbc.OracleBlob interface.

3 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.ARRAY class is deprecated and
replaced with the oracle.jdbc.OracleArray interface.

4 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.STRUCT class is deprecated
and replaced with the oracle.jdbc.OracleStruct interface.

5 Starting from Oracle Database 12c Release 1 (12.1), the oracle.sql.REF class is deprecated and
replaced with the oracle.jdbc.OracleRef interface.

The most efficient way to access numeric data is to use primitive Java types like int,
float, long, and double. However, the range of values of these types do not exactly
match the range of values of the SQL NUMBER data type. As a result, there may be
some loss of information. If absolute precision is required across the entire value
range, then use the BigDecimal type.

All character data is converted to the UCS2 character set of Java. The most efficient
way to access character data is as java.lang.String. In worst case, this can cause a
loss of information when two or more characters in the database character set map to
a single UCS2 character. Since Oracle Database 11g, all characters in the character
set map to the characters in the UCS2 character set. However, some characters do
map to surrogate pairs.

C.3 Transaction Isolation Levels and Access Modes in
JDBC

Read-only connections are supported by Oracle JDBC drivers, but not by the Oracle
server.

For transactions, the Oracle server supports only the TRANSACTION_READ_COMMITTED
and TRANSACTION_SERIALIZABLE transaction isolation levels. The default is
TRANSACTION_READ_COMMITTED. Use the following methods of the
oracle.jdbc.OracleConnection interface to get and set the level:

• getTransactionIsolation: Gets the current transaction isolation level of the
connection.

• setTransactionIsolation: Changes the transaction isolation level, using either
the TRANSACTION_READ_COMMITTED or the TRANSACTION_SERIALIZABLE value.

Appendix C
Transaction Isolation Levels and Access Modes in JDBC

C-6

D
JDBC Error Messages

This appendix briefly discusses the general structure of Java Database Connectivity
(JDBC) error messages, then lists general JDBC error messages and TTC error
messages that Oracle JDBC drivers can return. The appendix is organized as follows:

• General Structure of JDBC Error Messages

• General JDBC Messages

• Native XA Messages

• TTC Messages

Each of the message lists is first sorted by ORA number, and then alphabetically.

D.1 General Structure of JDBC Error Messages
The general JDBC error message structure allows run-time information to be
appended to the end of a message, following a colon, as follows:

<error_message>:<extra_info>

For example, a "closed statement" error might be displayed as follows:

Closed Statement:next

This indicates that the exception was thrown during a call to the next method (of a
result set object).

In some cases, the user can find the same information in a stack trace.

D.2 General JDBC Messages
This section lists general JDBC error messages, first sorted by the ORA number, and
then in alphabetic order in the following subsections:

• JDBC Messages Sorted by ORA Number

• JDBC Messages Sorted in Alphabetic Order

Note:

The ORA-17033 and ORA-17034 error messages use the term SQL92. The
JDBC escape syntax was previously known as SQL92 Syntax or SQL92
escape syntax.

D-1

D.2.1 JDBC Messages Sorted by ORA Number
The following table lists the JDBC error messages sorted by the ORA number:

Table D-1 JDBC Messages Sorted by ORA Number

ORA Number Message

ORA-17001 Internal Error

ORA-17002 Io exception

ORA-17003 Invalid column index

ORA-17004 Invalid column type

ORA-17005 Unsupported column type

ORA-17006 Invalid column name

ORA-17007 Invalid dynamic column

ORA-17008 Closed Connection

ORA-17009 Closed Statement

ORA-17010 Closed Resultset

ORA-17011 Exhausted Resultset

ORA-17012 Parameter Type Conflict

ORA-17014 ResultSet.next was not called

ORA-17015 Statement was cancelled

ORA-17016 Statement timed out

ORA-17017 Cursor already initialized

ORA-17018 Invalid cursor

ORA-17019 Can only describe a query

ORA-17020 Invalid row prefetch

ORA-17021 Missing defines

ORA-17022 Missing defines at index

ORA-17023 Unsupported feature

ORA-17024 No data read

ORA-17025 Error in defines.isNull ()

ORA-17026 Numeric Overflow

ORA-17027 Stream has already been closed

ORA-17028 Can not do new defines until the current ResultSet is closed

ORA-17029 setReadOnly: Read-only connections not supported

ORA-17030 READ_COMMITTED and SERIALIZABLE are the only valid
transaction levels

ORA-17031 setAutoClose: Only support auto close mode on

ORA-17032 cannot set row prefetch to zero

ORA-17033 Malformed SQL92 string at position

ORA-17034 Non supported SQL92 token at position

ORA-17035 Character Set Not Supported !!

Appendix D
General JDBC Messages

D-2

Table D-1 (Cont.) JDBC Messages Sorted by ORA Number

ORA Number Message

ORA-17036 exception in OracleNumber

ORA-17037 Fail to convert between UTF8 and UCS2

ORA-17038 Byte array not long enough

ORA-17039 Char array not long enough

ORA-17040 Sub Protocol must be specified in connection URL

ORA-17041 Missing IN or OUT parameter at index:

ORA-17042 Invalid Batch Value

ORA-17043 Invalid stream maximum size

ORA-17044 Internal error: Data array not allocated

ORA-17045 Internal error: Attempt to access bind values beyond the batch
value

ORA-17046 Internal error: Invalid index for data access

ORA-17047 Error in Type Descriptor parse

ORA-17048 Undefined type

ORA-17049 Inconsistent java and sql object types

ORA-17050 no such element in vector

ORA-17051 This API cannot be be used for non-UDT types

ORA-17052 This ref is not valid

ORA-17053 The size is not valid

ORA-17054 The LOB locator is not valid

ORA-17055 Invalid character encountered in

ORA-17056 Non supported character set (add orai18n.jar in your classpath)

ORA-17057 Closed LOB

ORA-17058 Internal error: Invalid NLS Conversion ratio

ORA-17059 Fail to convert to internal representation

ORA-17060 Fail to construct descriptor

ORA-17061 Missing descriptor

ORA-17062 Ref cursor is invalid

ORA-17063 Not in a transaction

ORA-17064 Invalid Sytnax or Database name is null

ORA-17065 Conversion class is null

ORA-17066 Access layer specific implementation needed

ORA-17067 Invalid Oracle URL specified

ORA-17068 Invalid argument(s) in call

ORA-17069 Use explicit XA call

ORA-17070 Data size bigger than max size for this type

ORA-17071 Exceeded maximum VARRAY limit

ORA-17072 Inserted value too large for column

Appendix D
General JDBC Messages

D-3

Table D-1 (Cont.) JDBC Messages Sorted by ORA Number

ORA Number Message

ORA-17074 invalid name pattern

ORA-17075 Invalid operation for forward only resultset

ORA-17076 Invalid operation for read only resultset

ORA-17077 Fail to set REF value

ORA-17078 Cannot do the operation as connections are already opened

ORA-17079 User credentials doesn't match the existing ones

ORA-17080 invalid batch command

ORA-17081 error occurred during batching

ORA-17082 No current row

ORA-17083 Not on the insert row

ORA-17084 Called on the insert row

ORA-17085 Value conflicts occurs

ORA-17086 Undefined column value on the insert row

ORA-17087 Ignored performance hint: setFetchDirection()

ORA-17088 Unsupported syntax for requested resultset type and
concurrency level

ORA-17089 internal error

ORA-17090 operation not allowed

ORA-17091 Unable to create resultset at the requested type and/or
concurrency level

ORA-17092 JDBC statements cannot be created or executed at end of call
processing

ORA-17093 OCI operation returned OCI_SUCCESS_WITH_INFO

ORA-17094 Object type version mismatched

ORA-17095 Statement cache size has not been set

ORA-17096 Statement Caching cannot be enabled for this logical
connection.

ORA-17097 Invalid PL/SQL Index Table element type

ORA-17098 Invalid empty lob operation

ORA-17099 Invalid PL/SQL Index Table array length

ORA-17100 Invalid database Java Object

ORA-17101 Invalid properties in OCI Connection Pool Object

ORA-17102 Bfile is read only

ORA-17103 invalid connection type to return via getConnection. Use
getJavaSqlConnection instead

ORA-17104 SQL statement to execute cannot be empty or null

ORA-17105 connection session time zone was not set

ORA-17106 invalid JDBC-OCI driver connection pool configuration specified

ORA-17107 invalid proxy type specified

Appendix D
General JDBC Messages

D-4

Table D-1 (Cont.) JDBC Messages Sorted by ORA Number

ORA Number Message

ORA-17108 No max length specified in defineColumnType

ORA-17109 standard Java character encoding not found

ORA-17110 execution completed with warning

ORA-17111 Invalid connection cache TTL timeout specified

ORA-17112 Invalid thread interval specified

ORA-17113 Thread interval value is more than the cache timeout value

ORA-17114 could not use local transaction commit in a global transaction

ORA-17115 could not use local transaction rollback in a global transaction

ORA-17116 could not turn on auto-commit in an active global transaction

ORA-17117 could not set savepoint in an active global transaction

ORA-17118 could not obtain ID for a named Savepoint

ORA-17119 could not obtain name for an un-named Savepoint

ORA-17120 could not set a Savepoint with auto-commit on

ORA-17121 could not rollback to a Savepoint with auto-commit on

ORA-17122 could not rollback to a local txn Savepoint in a global transaction

ORA-17123 Invalid statement cache size specified

ORA-17124 Invalid connection cache Inactivity timeout specified

ORA-17125 Improper statement type returned by explicit cache

ORA-17126 Fixed Wait timeout elapsed

ORA-17127 Invalid Fixed Wait timeout specified

ORA-17128 SQL string is not Query

ORA-17129 SQL string is not a DML Statement

ORA-17132 Invalid conversion requested

ORA-17133 UNUSED

ORA-17134 Length of named parameter in SQL exceeded 32 characters

ORA-17135 Parameter name used in setXXXStream appears more than
once in SQL

ORA-17136 Malformed DATALINK URL, try getString() instead

ORA-17137 Connection Caching Not Enabled or Not a Valid Cache Enabled
DataSource

ORA-17138 Invalid Connection Cache Name. Must be a valid String and
Unique

ORA-17139 Invalid Connection Cache Properties

ORA-17140 Connection Cache with this Cache Name already exists

ORA-17141 Connection Cache with this Cache Name does not exist

ORA-17142 Connection Cache with this Cache Name is Disabled

ORA-17143 Invalid or Stale Connection found in the Connection Cache

ORA-17144 statement handle not executed

ORA-17145 Invalid ONS Event received

Appendix D
General JDBC Messages

D-5

Table D-1 (Cont.) JDBC Messages Sorted by ORA Number

ORA Number Message

ORA-17146 Invalid ONS Event Version received

ORA-17147 Attempt to set a parameter name that does not occur in the SQL

ORA-17148 Method only implemented in thin

ORA-17149 This is already a proxy session

ORA-17150 Wrong arguments for proxy session

ORA-17151 Clob is too large to be stored in a Java String

ORA-17152 This method is only implemented in logical connections

ORA-17153 This method is only implemented in physical connections

ORA-17154 Cannot map Oracle character to Unicode

ORA-17155 Cannot map Unicode to Oracle character

ORA-17156 Invalid array size for End-to-End metrics values

ORA-17157 setString can only process strings of less than 32766
chararacters

ORA-17158 duration is invalid for this function

ORA-17159 metric value for end-to-end tracing is too long

ORA-17160 execution context id sequence number out of range

ORA-17161 Invalid transaction mode used

ORA-17162 Unsupported holdability value

ORA-17163 Can not use getXAConnection() when connection caching is
enabled

ORA-17164 Can not call getXAResource() from physical connection with
caching on

ORA-17165 DBMS_JDBC package not preset in server for this connection

ORA-17166 Cannot perform fetch on a PLSQL statement

ORA-17167 PKI classes not found. To use 'connect /' functionality,
oraclepki.jar must be in the classpath

ORA-17168 encountered a problem with the Secret Store. Check the wallet
location for the presence of an open wallet (cwallet.sso) and
ensure that this wallet contains the correct credentials using the
mkstore utility

ORA-17169 Cannot bind stream to a ScrollableResultSet or
UpdatableResultSet

ORA-17170 The Namespace cannot be empty

ORA-17171 The attribute length cannot exceed 30 chars

ORA-17172 That value of the attribute cannot exceed 400 chars

ORA-17173 Not all return parameters registered

ORA-17174 The only supported namespace is CLIENTCONTEXT

ORA-17175 Error during remote ONS configuration

ORA-17259 SQLXML cannot find the XML support jar file in the classpath

ORA-17260 Attempt to read an empty SQLXML

Appendix D
General JDBC Messages

D-6

Table D-1 (Cont.) JDBC Messages Sorted by ORA Number

ORA Number Message

ORA-17261 Attempt to read a SQLXML that is not readable

ORA-17262 Attempt to write a SQLXML that is not writeable

ORA-17263 SQLXML cannot create a Result of that type

ORA_17264 SQLXML cannoct create a Source of that type

D.2.2 JDBC Messages Sorted in Alphabetic Order
The following table lists the JDBC error messages sorted in alphabetic order:

Table D-2 JDBC Messages Sorted in Alphabetic Order

ORA Number Message

ORA-17066 Access layer specific implementation needed

ORA-17261 Attempt to read a SQLXML that is not readable

ORA-17260 Attempt to read an empty SQLXML

ORA-17147 Attempt to set a parameter name that does not occur in the SQL

ORA-17262 Attempt to write a SQLXML that is not writeable

ORA-17102 Bfile is read only

ORA-17038 Byte array not long enough

ORA-17084 Called on the insert row

ORA-17164 Can not call getXAResource() from physical connection with
caching on

ORA-17028 Can not do new defines until the current ResultSet is closed

ORA-17163 Can not use getXAConnection() when connection caching is
enabled

ORA-17019 Can only describe a query

ORA-17169 Cannot bind stream to a ScrollableResultSet or
UpdatableResultSet

ORA-17078 Cannot do the operation as connections are already opened

ORA-17154 Cannot map Oracle character to Unicode

ORA-17155 Cannot map Unicode to Oracle character

ORA-17166 Cannot perform fetch on a PLSQL statement

ORA-17032 Cannot set row prefetch to zero

ORA-17039 Char array not long enough

ORA-17035 Character Set Not Supported !!

ORA-17151 Clob is too large to be stored in a Java String

ORA-17008 Closed Connection

ORA-17057 Closed LOB

ORA-17010 Closed Resultset

ORA-17009 Closed Statement

Appendix D
General JDBC Messages

D-7

Table D-2 (Cont.) JDBC Messages Sorted in Alphabetic Order

ORA Number Message

ORA-17140 Connection Cache with this Cache Name already exists

ORA-17141 Connection Cache with this Cache Name does not exist

ORA-17142 Connection Cache with this Cache Name is Disabled

ORA-17137 Connection Caching Not Enabled or Not a Valid Cache Enabled
DataSource

ORA-17105 Connection session time zone was not set

ORA-17065 Conversion class is null

ORA-17118 Could not obtain ID for a named Savepoint

ORA-17119 Could not obtain name for an un-named Savepoint

ORA-17122 Could not rollback to a local txn Savepoint in a global transaction

ORA-17121 Could not rollback to a Savepoint with auto-commit on

ORA-17120 Could not set a Savepoint with auto-commit on

ORA-17117 Could not set savepoint in an active global transaction

ORA-17116 Could not turn on auto-commit in an active global transaction

ORA-17114 Could not use local transaction commit in a global transaction

ORA-17115 Could not use local transaction rollback in a global transaction

ORA-17017 Cursor already initialized

ORA-17070 Data size bigger than max size for this type

ORA-17165 DBMS_JDBC package not preset in server for this connection

ORA-17158 Duration is invalid for this function

ORA-17168 Encountered a problem with the Secret Store. Check the wallet
location for the presence of an open wallet (cwallet.sso) and
ensure that this wallet contains the correct credentials using the
mkstore utility

ORA-17175 Error during remote ONS configuration

ORA-17025 Error in defines.isNull ()

ORA-17047 Error in Type Descriptor parse

ORA-17081 error occurred during batching

ORA-17071 Exceeded maximum VARRAY limit

ORA-17036 Exception in OracleNumber

ORA-17110 Execution completed with warning

ORA-17160 Execution context id sequence number out of range

ORA-17011 Exhausted Resultset

ORA-17060 Fail to construct descriptor

ORA-17037 Fail to convert between UTF8 and UCS2

ORA-17059 Fail to convert to internal representation

ORA-17077 Fail to set REF value

ORA-17126 Fixed Wait timeout elapsed

ORA-17087 Ignored performance hint: setFetchDirection()

Appendix D
General JDBC Messages

D-8

Table D-2 (Cont.) JDBC Messages Sorted in Alphabetic Order

ORA Number Message

ORA-17125 Improper statement type returned by explicit cache

ORA-17049 Inconsistent java and sql object types

ORA-17072 Inserted value too large for column

ORA-17001 Internal Error

ORA-17089 internal error

ORA-17045 Internal error: Attempt to access bind values beyond the batch
value

ORA-17044 Internal error: Data array not allocated

ORA-17046 Internal error: Invalid index for data access

ORA-17058 Internal error: Invalid NLS Conversion ratio

ORA-17068 Invalid argument(s) in call

ORA-17156 Invalid array size for End-to-End metrics values

ORA-17080 invalid batch command

ORA-17042 Invalid Batch Value

ORA-17055 Invalid character encountered in

ORA-17003 Invalid column index

ORA-17006 Invalid column name

ORA-17004 Invalid column type

ORA-17124 Invalid connection cache Inactivity timeout specified

ORA-17138 Invalid Connection Cache Name. Must be a valid String and
Unique

ORA-17139 Invalid Connection Cache Properties

ORA-17111 Invalid connection cache TTL timeout specified

ORA-17103 invalid connection type to return via getConnection. Use
getJavaSqlConnection instead

ORA-17132 Invalid conversion requested

ORA-17018 Invalid cursor

ORA-17100 Invalid database Java Object

ORA-17007 Invalid dynamic column

ORA-17098 Invalid empty lob operation

ORA-17127 Invalid Fixed Wait timeout specified

ORA-17106 invalid JDBC-OCI driver connection pool configuration specified

ORA-17074 invalid name pattern

ORA-17145 Invalid ONS Event received

ORA-17146 Invalid ONS Event Version received

ORA-17075 Invalid operation for forward only resultset

ORA-17076 Invalid operation for read only resultset

ORA-17143 Invalid or Stale Connection found in the Connection Cache

ORA-17067 Invalid Oracle URL specified

Appendix D
General JDBC Messages

D-9

Table D-2 (Cont.) JDBC Messages Sorted in Alphabetic Order

ORA Number Message

ORA-17099 Invalid PL/SQL Index Table array length

ORA-17097 Invalid PL/SQL Index Table element type

ORA-17101 Invalid properties in OCI Connection Pool Object

ORA-17107 invalid proxy type specified

ORA-17020 Invalid row prefetch

ORA-17123 Invalid statement cache size specified

ORA-17043 Invalid stream maximum size

ORA-17064 Invalid Sytnax or Database name is null

ORA-17112 Invalid thread interval specified

ORA-17161 Invalid transaction mode used

ORA-17002 Io exception

ORA-17092 JDBC statements cannot be created or executed at end of call
processing

ORA-17134 Length of named parameter in SQL exceeded 32 characters

ORA-17136 Malformed DATALINK URL, try getString() instead

ORA-17033 Malformed SQL92 string at position

ORA-17148 Method only implemented in thin

ORA-17159 metric value for end-to-end tracing is too long

ORA-17021 Missing defines

ORA-17022 Missing defines at index

ORA-17061 Missing descriptor

ORA-17041 Missing IN or OUT parameter at index:

ORA-17082 No current row

ORA-17024 No data read

ORA-17108 No max length specified in defineColumnType

ORA-17050 no such element in vector

ORA-17056 Non supported character set (add orai18n.jar in your classpath)

ORA-17034 Non supported SQL92 token at position

ORA-17173 Not all return parameters registered

ORA-17063 Not in a transaction

ORA-17083 Not on the insert row

ORA-17026 Numeric Overflow

ORA-17094 Object type version mismatched

ORA-17093 OCI operation returned OCI_SUCCESS_WITH_INFO

ORA-17090 operation not allowed

ORA-17135 Parameter name used in setXXXStream appears more than
once in SQL

ORA-17012 Parameter Type Conflict

Appendix D
General JDBC Messages

D-10

Table D-2 (Cont.) JDBC Messages Sorted in Alphabetic Order

ORA Number Message

ORA-17167 PKI classes not found. To use 'connect /' functionality,
oraclepki.jar must be in the classpath

ORA-17030 READ_COMMITTED and SERIALIZABLE are the only valid
transaction levels

ORA-17062 Ref cursor is invalid

ORA-17014 ResultSet.next was not called

ORA-17031 setAutoClose: Only support auto close mode on

ORA-17029 setReadOnly: Read-only connections not supported

ORA-17157 setString can only process strings of less than 32766
chararacters

ORA-17104 SQL statement to execute cannot be empty or null

ORA-17129 SQL string is not a DML Statement

ORA-17128 SQL string is not Query

ORA-17263 SQLXML cannot create a Result of that type

ORA_17264 SQLXML cannoct create a Source of that type

ORA-17259 SQLXML cannot find the XML support jar file in the classpath

ORA-17109 standard Java character encoding not found

ORA-17095 Statement cache size has not been set

ORA-17096 Statement Caching cannot be enabled for this logical
connection.

ORA-17144 statement handle not executed

ORA-17016 Statement timed out

ORA-17015 Statement was cancelled

ORA-17027 Stream has already been closed

ORA-17040 Sub Protocol must be specified in connection URL

ORA-17172 That value of the attribute cannot exceed 400 chars

ORA-17171 The attribute length cannot exceed 30 chars

ORA-17054 The LOB locator is not valid

ORA-17170 The Namespace cannot be empty

ORA-17174 The only supported namespace is CLIENTCONTEXT

ORA-17053 The size is not valid

ORA-17051 This API cannot be be used for non-UDT types

ORA-17149 This is already a proxy session

ORA-17152 This method is only implemented in logical connections

ORA-17153 This method is only implemented in physical connections

ORA-17052 This ref is not valid

ORA-17113 Thread interval value is more than the cache timeout value

ORA-17091 Unable to create resultset at the requested type and/or
concurrency level

Appendix D
General JDBC Messages

D-11

Table D-2 (Cont.) JDBC Messages Sorted in Alphabetic Order

ORA Number Message

ORA-17086 Undefined column value on the insert row

ORA-17048 Undefined type

ORA-17005 Unsupported column type

ORA-17023 Unsupported feature

ORA-17162 Unsupported holdability value

ORA-17088 Unsupported syntax for requested resultset type and
concurrency level

ORA-17133 UNUSED

ORA-17069 Use explicit XA call

ORA-17079 User credentials doesn't match the existing ones

ORA-17085 Value conflicts occurs

ORA-17150 Wrong arguments for proxy session

D.3 Native XA Messages
The following sections cover the JDBC error messages that are specific to the Native
XA feature:

• Native XA Messages Sorted by ORA Number

• Native XA Messages Sorted in Alphabetic Order

D.3.1 Native XA Messages Sorted by ORA Number
The following table lists the Native XA messages sorted by the ORA number:

Table D-3 Native XA Messages Sorted by ORA Number

ORA Number Message

ORA-17200 Unable to properly convert XA open string from Java to C

ORA-17201 Unable to properly convert XA close string from Java to C

ORA-17202 Unable to properly convert RM name from Java to C

ORA-17203 Could not casting pointer type to jlong

ORA-17204 Input array too short to hold OCI handles

ORA-17205 Failed to obtain OCISvcCtx handle from C-XA using xaoSvcCtx

ORA-17206 Failed to obtain OCIEnv handle from C-XA using xaoEnv

ORA-17207 The tnsEntry property was not set in DataSource

ORA-17213 C-XA returned XAER_RMERR during xa_open

ORA-17215 C-XA returned XAER_INVAL during xa_open

ORA-17216 C-XA returned XAER_PROTO during xa_open

ORA-17233 C-XA returned XAER_RMERR during xa_close

Appendix D
Native XA Messages

D-12

Table D-3 (Cont.) Native XA Messages Sorted by ORA Number

ORA Number Message

ORA-17235 C-XA returned XAER_INVAL during xa_close

ORA-17236 C-XA returned XAER_PROTO during xa_close

D.3.2 Native XA Messages Sorted in Alphabetic Order
The following table lists the Native XA messages sorted in the alphabetic order:

Table D-4 Native XA Messages Sorted in Alphabetic Order

ORA Number Message

ORA-17203 Could not casting pointer type to jlong

ORA-17235 C-XA returned XAER_INVAL during xa_close

ORA-17215 C-XA returned XAER_INVAL during xa_open

ORA-17236 C-XA returned XAER_PROTO during xa_close

ORA-17216 C-XA returned XAER_PROTO during xa_open

ORA-17233 C-XA returned XAER_RMERR during xa_close

ORA-17213 C-XA returned XAER_RMERR during xa_open

ORA-17206 Failed to obtain OCIEnv handle from C-XA using xaoEnv

ORA-17205 Failed to obtain OCISvcCtx handle from C-XA using xaoSvcCtx

ORA-17204 Input array too short to hold OCI handles

ORA-17207 The tnsEntry property was not set in DataSource

ORA-17202 Unable to properly convert RM name from Java to C

ORA-17201 Unable to properly convert XA close string from Java to C

ORA-17200 Unable to properly convert XA open string from Java to C

D.4 TTC Messages
This section lists TTC error messages, first sorted by the ORA number and then in
alphabetic order in the following subsections:

• TTC Messages Sorted by ORA Number

• TTC Messages Sorted in Alphabetic Order

D.4.1 TTC Messages Sorted by ORA Number
The following table lists the TTC messages sorted by the ORA number:

Table D-5 TTC Messages Sorted by ORA Number

ORA Number Message

ORA-17401 Protocol violation

Appendix D
TTC Messages

D-13

Table D-5 (Cont.) TTC Messages Sorted by ORA Number

ORA Number Message

ORA-17402 Only one RPA message is expected

ORA-17403 Only one RXH message is expected

ORA-17404 Received more RXDs than expected

ORA-17405 UAC length is not zero

ORA-17406 Exceeding maximum buffer length

ORA-17407 invalid Type Representation(setRep)

ORA-17408 invalid Type Representation(getRep)

ORA-17409 invalid buffer length

ORA-17410 No more data to read from socket

ORA-17411 Data Type representations mismatch

ORA-17412 Bigger type length than Maximum

ORA-17413 Exceding key size

ORA-17414 Insufficient Buffer size to store Columns Names

ORA-17415 This type hasn't been handled

ORA-17416 FATAL

ORA-17417 NLS Problem, failed to decode column names

ORA-17418 Internal structure's field length error

ORA-17419 Invalid number of columns returned

ORA-17420 Oracle Version not defined

ORA-17421 Types or Connection not defined

ORA-17422 Invalid class in factory

ORA-17423 Using a PLSQL block without an IOV defined

ORA-17424 Attempting different marshaling operation

ORA-17425 Returning a stream in PLSQL block

ORA-17426 Both IN and OUT binds are NULL

ORA-17427 Using Uninitialized OAC

ORA-17428 Logon must be called after connect

ORA-17429 Must be at least connected to server

ORA-17430 Must be logged on to server

ORA-17431 SQL Statement to parse is null

ORA-17432 invalid options in all7

ORA-17433 invalid arguments in call

ORA-17434 not in streaming mode

ORA-17435 invalid number of in_out_binds in IOV

ORA-17436 invalid number of outbinds

ORA-17437 Error in PLSQL block IN/OUT argument(s)

ORA-17438 Internal - Unexpected value

ORA-17439 Invalid SQL type

Appendix D
TTC Messages

D-14

Table D-5 (Cont.) TTC Messages Sorted by ORA Number

ORA Number Message

ORA-17440 DBItem/DBType is null

ORA-17441 Oracle Version not supported. Minimum supported version is
7.2.3.

ORA-17442 Refcursor value is invalid

ORA-17443 Null user or password not supported in THIN driver

ORA-17444 TTC Protocol version received from server not supported

ORA-17445 LOB already opened in the same transaction

ORA-17446 LOB already closed in the same transaction

ORA-17447 OALL8 is in an inconsistent state

D.4.2 TTC Messages Sorted in Alphabetic Order
The following table lists the TTC messages in the alphabetic order:

Table D-6 TTC Messages Sorted in Alphabetic Order

ORA Number Message

ORA-17424 Attempting different marshaling operation

ORA-17412 Bigger type length than Maximum

ORA-17426 Both IN and OUT binds are NULL

ORA-17411 Data Type representations mismatch

ORA-17440 DBItem/DBType is null

ORA-17437 Error in PLSQL block IN/OUT argument(s)

ORA-17413 Exceding key size

ORA-17406 Exceeding maximum buffer length

ORA-17416 FATAL

ORA-17414 Insufficient Buffer size to store Columns Names

ORA-17438 Internal - Unexpected value

ORA-17418 Internal structure's field length error

ORA-17433 invalid arguments in call

ORA-17409 invalid buffer length

ORA-17422 Invalid class in factory

ORA-17419 Invalid number of columns returned

ORA-17435 invalid number of in_out_binds in IOV

ORA-17436 invalid number of outbinds

ORA-17432 invalid options in all7

ORA-17439 Invalid SQL type

ORA-17408 invalid Type Representation(getRep)

ORA-17407 invalid Type Representation(setRep)

Appendix D
TTC Messages

D-15

Table D-6 (Cont.) TTC Messages Sorted in Alphabetic Order

ORA Number Message

ORA-17446 LOB already closed in the same transaction

ORA-17445 LOB already opened in the same transaction

ORA-17428 Logon must be called after connect

ORA-17429 Must be at least connected to server

ORA-17430 Must be logged on to server

ORA-17417 NLS Problem, failed to decode column names

ORA-17410 No more data to read from socket

ORA-17434 not in streaming mode

ORA-17443 Null user or password not supported in THIN driver

ORA-17447 OALL8 is in an inconsistent state

ORA-17402 Only one RPA message is expected

ORA-17403 Only one RXH message is expected

ORA-17420 Oracle Version not defined

ORA-17441 Oracle Version not supported. Minimum supported version is
7.2.3.

ORA-17401 Protocol violation

ORA-17404 Received more RXDs than expected

ORA-17442 Refcursor value is invalid

ORA-17425 Returning a stream in PLSQL block

ORA-17431 SQL Statement to parse is null

ORA-17415 This type hasn't been handled

ORA-17444 TTC Protocol version received from server not supported

ORA-17421 Types or Connection not defined

ORA-17405 UAC length is not zero

ORA-17423 Using a PLSQL block without an IOV defined

ORA-17427 Using Uninitialized OAC

Appendix D
TTC Messages

D-16

E
Troubleshooting

This appendix describes how to troubleshoot a Java Database Connectivity (JDBC)
application in the following topics:

• Common Problems

• Basic Debugging Procedures

E.1 Common Problems
This section describes some common problems that you might encounter while using
Oracle JDBC drivers. These problems include:

• Memory Consumption for CHAR Columns Defined as OUT or IN/OUT Variables

• Memory Leaks and Running Out of Cursors

• Opening More than 16 OCI Connections for a Process

• Using statement.cancel

• Using JDBC with Firewalls

• Frequent Abrupt Disconnection from Server

• Network Adapter Cannot Establish Connection

E.1.1 Memory Consumption for CHAR Columns Defined as OUT or
IN/OUT Variables

In PL/SQL, when a CHAR or a VARCHAR2 column is defined as a OUT or IN/OUT variable,
the driver allocates a CHAR array of 32512 chars. This can cause a memory
consumption problem. JDBC Thin driver does not allocate memory when using
VARCHAR2 output type. But JDBC OCI driver allocates memory for both CHAR and
VARCHAR2 types. So, CPU load in OCI driver is higher than Thin driver.

At previous releases, the solution to the problem was to invoke the
Statement.setMaxFieldSize method. A better solution is to use
OracleCallableStatement.registerOutParameter. Oracle encourages you always to
call registerOutParameter (int paramIndex, int sqlType, int scale, int
maxLength) on each CHAR or VARCHAR2 column. This method is defined in
oracle.jdbc.OracleCallableStatement. Use the fourth argument, maxLength, to limit
the memory consumption. This parameter tells the driver how many characters are
necessary to store this column. The column is truncated if the character array cannot
hold the column data. The third argument, scale, is ignored by the driver.

E.1.2 Memory Leaks and Running Out of Cursors
If you receive messages that you are running out of cursors or that you are running out
of memory, make sure that all your Statement and ResultSet objects are explicitly

E-1

closed. Oracle JDBC drivers do not have finalizer methods. They perform cleanup
routines by using the close method of the ResultSet and Statement classes. If you do
not explicitly close your result set and statement objects, significant memory leaks can
occur. You could also run out of cursors in the database. Closing a statement releases
the corresponding cursor in the database.

Similarly, you must explicitly close Connection objects to avoid leaking and running out
of cursors on the server-side. When you close the connection, the JDBC driver closes
any open statement objects associated with it, thus releasing the cursor on the server-
side.

E.1.3 Opening More than 16 OCI Connections for a Process
You may find that you are unable to open more than approximately 16 JDBC-OCI
connections for a process at any given time. The most likely reasons for this would be
either that the number of processes on the server exceeded the limit specified in the
initialization file, or that the per-process file descriptors limit was exceeded. It is
important to note that one JDBC-OCI connection can use more than one file descriptor
(it might use anywhere between 3 and 4 file descriptors).

If the server allows more than 16 processes, then the problem could be with the per-
process file descriptor limit. The possible solution would be to increase this limit.

E.1.4 Using statement.cancel
The JDBC standard method Statement.cancel attempts to cleanly stop the execution
of a SQL statement by sending a message to the database. In response, the database
stops execution and replies with an error message. The Java thread that invoked
Statement.execute waits on the server, and continues execution only when it receives
the error reply message invoked by the call of the other thread to Statement.cancel
method.

As a result, the Statement.cancel method relies on the correct functioning of the
network and the database. If either the network connection is broken or the database
server is hung, the client does not receive the error reply to the cancel message.
Frequently, when the server process dies, JDBC receives an IOException that frees
the thread that invoked Statement.execute. In some circumstances, the server is
hung, but JDBC does not receive an IOException. The Statement.cancel method
does not free the thread that initiated the Statement.execute method.

Appendix E
Common Problems

E-2

Note:

Remember the following points while working with the Statement.cancel
method:

• Distinguish between Connection-level and Statement-level cancel. If a
nonstatement execution, for example, a ROLLBACK is cancelled by a
statement.cancel method, then we replay the command (only if it is
ROLLBACK, COMMIT, autoCommit ON, autoCommit OFF, VERSION). To
guarantee data integrity, we do not replay statement executions.

• Synchronize statement execution and statement cancel, so that the
execution does not return until the cancel call is sent to the Database.
This provides a better chance for the executing statement to be
cancelled.

• Synchronize cancel calls, so that any new cancel request is ignored until
the cancel in progress has completed the full protocol, that is, after the
database receives an interrupt, act on it, and notify JDBC.

When JDBC does not receive an IOException, Oracle Net may eventually time out
and close the connection. This causes an IOException and frees the thread. This
process can take many minutes. For information about how to control this time-out,
see the description of the readTimeout property for
OracleDatasource.setConnectionProperties. You can also tune this time-out with
certain Oracle Net settings.

The JDBC standard method Statement.setQueryTimeout relies on the
Statement.cancel method. If execution continues longer than the specified time-out
interval, then the monitor thread calls the Statement.cancel method. This is subject to
all the same limitations described previously. As a result, there are cases when the
time-out does not free the thread that invoked the Statement.execute method.

The length of time between execution and cancellation is not precise. This interval is
no less than the specified time-out interval but can be several seconds longer. If the
application has active threads running at high priority, then the interval can be
arbitrarily longer. The monitor thread runs at high priority, but other high priority
threads may keep it from running indefinitely. Note that the monitor thread is started
only if there are statements executed with non zero time-out. There is only one monitor
thread that monitors all Oracle JDBC statement execution.

Note:

The Statement.cancel method and the Statement.setQueryTimeout
method are not supported in the server-side internal driver. The server-side
internal driver runs in the single-threaded server process and the Oracle JVM
implements Java threads within this single-threaded process. If the server-
side internal driver is executing a SQL statement, then no Java thread can
call the Statement.cancel method. This also applies to the Oracle JDBC
monitor thread.

Appendix E
Common Problems

E-3

E.1.5 Using JDBC with Firewalls
Firewall timeout for idle-connections may sever a connection. This can cause JDBC
applications to hang while waiting for a connection. You can perform one or more of
the following actions to avoid connections from being severed due to firewall timeout:

• If you are using connection caching or connection pooling, then always set the
inactivity timeout value on the connection cache to be shorter than the firewall idle
timeout value.

• Pass oracle.jdbc.ReadTimeout as connection property to enable read timeout on
socket. The timeout value is in milliseconds.

• For both JDBC OCI and JDBC Thin drivers, use net descriptor to connect to the
database and specify the ENABLE=BROKEN parameter in the DESCRIPTION clause in
the connect descriptor. Also, set a lower value for TCP_KEEPALIVE_INTERVAL.

• Enable Oracle Net DCD by setting SQLNET.EXPIRE_TIME=1 in the sqlnet.ora file
on the server-side.

E.1.6 Frequent Abrupt Disconnection from Server
If the network is not reliable, then it is difficult for a client to detect the frequent
disconnections when the server is abruptly disconnected. By default, a client running
on Linux takes 7200 seconds (2 hours) to sense the abrupt disconnections. This value
is equal to the value of the tcp_keepalive_time property. If you want your application
to detect the disconnections faster, then you must set the value of the
tcp_keepalive_time, tcp_keepalive_interval, and tcp_keepalive_probes
properties to a lower value at the operating system level.

Note:

Setting a low value for the tcp_keepalive_interval property leads to
frequent probe packets on the network, which can make the system slower.
So, the value of this property should be set appropriately based on the
system requirements.

Also, you must specify the ENABLE=BROKEN parameter in the DESCRIPTION clause in the
connection descriptor. For example:

jdbc:oracle:thin:@(DESCRIPTION=(ENABLE=BROKEN)(ADDRESS=(PROTOCOL=tcp)(PORT=5221)
(HOST=myhost))(CONNECT_DATA=(SERVICE_NAME=orcl)))

E.1.7 Network Adapter Cannot Establish Connection
You may receive the following error while trying to establish a connection from a JDBC
application to an Oracle instance:

java.sql.SQLException: Io exception:
 The Network Adapter could not establish connection

SQLException: SQLState (null) vendor code (17002)

Appendix E
Common Problems

E-4

This error may occur even if all or any of the following conditions is true:

• You are able to establish a SQL*Plus connection from the same client to the same
Oracle instance.

• You are able to establish a JDBC OCI connection, but not a JDBC Thin connection
from the same client to the same Oracle instance.

• The same JDBC application is able to connect from a different client to the same
Oracle instance.

• The same behavior applies whether the initial JDBC connection string specifies a
host name or an IP address.

One or more of the following reasons can cause this error:

• The host name to which you are trying to establish the connection is incorrect.

• The port number you are using to establish the connection is wrong.

• The NIC card supports both IPv4 and IPv6.

• The Oracle instance is configured for MTS, but the JDBC connection uses a
shared server instead of a dedicated server.

You can quickly diagnose these above-mentioned reasons by using SQL*Plus, except
for the issue with the NIC card. The following sections specify how to resolve this
error, and also contains a sample application:

• Oracle Instance Configured with MTS Server Uses Shared Server

• JDBC Thin Driver with NIC Card Supporting Both IPv4 and IPv6

• Sample Application

E.1.7.1 Oracle Instance Configured with MTS Server Uses Shared Server
For resolving this error, you must verify whether the Oracle instance is configured for
Multi-threaded Server (MTS) or not. If the Oracle instance is not configured for MTS,
then it must be configured.

If the Oracle instance is configured for MTS, then you must force the JDBC connection
to use a dedicated server instead of a shared server. You can achieve this by
reconfiguring the server to use dedicated connections only. If it is not feasible to
configure your server to use only dedicated connections, then you perform the
following steps to set it from the client side:

For JDBC OCI Client

1. Add the (SERVER=DEDICATED) property to the TNS connection string stored in the
tnsnames.ora file on the client.

2. Set the USER_DEDICATED_SERVER=ON in the sqlnet.ora file on the client.

For JDBC Thin:

You must specify a full name-value pair connection string (the same as it may appear
in the tnsnames.ora file) instead of the short JDBC Thin syntax. For example, instead
of the "jdbc:oracle:thin:@host:port:sid" connection string, you must use a
connection string of the following form:

 "jdbc:oracle:thin:@(DESCRIPTION=" +
 "(ADDRESS_LIST=" +

Appendix E
Common Problems

E-5

 "(ADDRESS=(PROTOCOL=TCP)" +
 "(HOST=host)" +
 "(PORT=port)" +
 ")" +
 ")" +
 "(CONNECT_DATA=" +
 "(SERVICE_NAME=sid)" +
 "(SERVER=DEDICATED)" +
 ")" +
 ")"

E.1.7.2 JDBC Thin Driver with NIC Card Supporting Both IPv4 and IPv6
If the Network Interface Controller (NIC) card of the server is configured to support
both IPv4 and IPv6, then some services may start with IPv6. Any client application that
tries to connect using IPv4 to the service that is running with IPv6 (or the other way
round) receives a connection refused error. If a JDBC thin client application tries to
connect to the Database server, then the application may stop responding or fail with
the following error:

java.sql.SQLException: Io exception: The Network Adapter could not establish the
connection Error Code: 17002

Use any of the following solutions to resolve this error:

• Indicate the Java Virtual Machine (JVM) to use IP protocol version 4. Launch the
JVM, where the JDBC application is running, with the -
Djava.net.preferIPv4Stack parameter as true. For example, suppose you are
running a JDBC application named jdbcTest. Then execute the application in the
following way:

java -Djava.net.preferIPv4Stack=true jdbcTest

• Use the OCI JDBC driver.

E.1.7.3 Sample Application
Example E-1 shows a basic JDBC program that connects to a Database and can be
used to test your connection. It enables to try all forms of connection using Oracle
JDBC drivers.

Example E-1 Basic JDBC Program to Connect to a Database in Five Different
Ways

import java.sql.*;
public class Jdbctest
{
 public static void main (String args[])
 {
 try
 {
 /* Uncomment the next line for more connection information */
 // DriverManager.setLogStream(System.out);
 /* Set the host, port, and sid below to match the entries in the
listener.ora */
 String host = "myhost.oracle.com";
 String port = "5221";
 String sid = "orcl";
 // or pass on command line arguments for all three items
 if (args.length >= 3)

Appendix E
Common Problems

E-6

 {
 host = args[0];
 port = args[1];
 sid = args[2];
 }

 String s1 = "jdbc:oracle:thin:@" + host + ":" + port + ":" + sid ;
 if (args.length == 1)
 {
 s1 = "jdbc:oracle:oci8:@" + args[0];
 }
 if (args.length == 4)
 {
 s1 = "jdbc:oracle:" + args[3] + ":@" +
 "(description=(address=(host=" + host+ ")
(protocol=tcp)(port=" + port+ "))(connect_data=(sid="+ sid + ")))";
 }
 System.out.println("Connecting with: ");
 System.out.println(s1);
 DriverManager.registerDriver(new
oracle.jdbc.driver.OracleDriver());
 Connection conn =
DriverManager.getConnection(s1,"hr","hr");
 DatabaseMetaData dmd = conn.getMetaData();
 System.out.println("DriverVersion:["+dmd.getDriverVersion()+"]");
 System.out.println("DriverMajorVersion:
["+dmd.getDriverMajorVersion()+"]");
 System.out.println("DriverMinorVersion:
["+dmd.getDriverMinorVersion()+"]");
 System.out.println("DriverName:["+dmd.getDriverName()+"]");
 if (conn!=null)
 conn.close();
 System.out.println("Done.");
 }
 catch (SQLException e)
 {
 System.out.println ("\n*** Java Stack Trace ***\n");
 e.printStackTrace();
 System.out.println ("\n*** SQLException caught ***\n");
 while (e != null)
 {
 System.out.println ("SQLState: " + e.getSQLState
());
 System.out.println ("Message: " + e.getMessage
());
 System.out.println ("Error Code: " + e.getErrorCode
());
 e = e.getNextException ();
 System.out.println ("");
 }
 }
 }
}

E.2 Basic Debugging Procedures
This section describes strategies for debugging a JDBC program:

• Oracle Net Tracing to Trap Network Events

Appendix E
Basic Debugging Procedures

E-7

• Third Party Debugging Tools

Related Topics

• About Processing SQL Exceptions

E.2.1 Oracle Net Tracing to Trap Network Events
You can enable client and server Oracle-Net trace to trap the packets sent over Oracle
Net. You can use client-side tracing only for the JDBC OCI driver; it is not supported
for the JDBC Thin driver.

The trace facility produces a detailed sequence of statements that describe network
events as they execute. "Tracing" an operation lets you obtain more information about
the internal operations of the event. This information is printed to a readable file that
identifies the events that led to the error. Several Oracle Net parameters in the
SQLNET.ORA file control the gathering of trace information. After setting the parameters
in SQLNET.ORA, you must make a new connection for tracing to be performed.

The higher the trace level, the more detail is captured in the trace file. Because the
trace file can be hard to understand, start with a trace level of 4 when enabling tracing.
The first part of the trace file contains connection handshake information, so look
beyond this for the SQL statements and error messages related to your JDBC
program.

Note:

The trace facility uses a large amount of disk space and might have
significant impact upon system performance. Therefore, enable tracing only
when necessary.

Related Topics

• Oracle Call Interface Programmer's Guide

E.2.1.1 Client-Side Tracing
Set the following parameters in the SQLNET.ORA file on the client system.

Note:

Starting from Oracle Database 12c Release 1 (12.1), Oracle recommends
you to use the configuration parameters present in the new XML
configuration file oraaccess.xml instead of the OCI-specific configuration
parameters present in the sqlnet.ora file. However, the configuration
parameters present in the sqlnet.ora file are still supported.

E.2.1.1.1 TRACE_LEVEL_CLIENT
Purpose:

Appendix E
Basic Debugging Procedures

E-8

Turns tracing on or off to a certain specified level.

Default Value:

0 or OFF

Available Values:

• 0 or OFF - No trace output

• 4 or USER - User trace information

• 10 or ADMIN - Administration trace information

• 16 or SUPPORT - WorldWide Customer Support trace information

Example:

TRACE_LEVEL_CLIENT=10

E.2.1.1.2 TRACE_DIRECTORY_CLIENT
Purpose:

Specifies the destination directory of the trace file.

Default Value:

ORACLE_HOME/network/trace

Example:

UNIX: TRACE_DIRECTORY_CLIENT=/oracle/traces

Windows: TRACE_DIRECTORY_CLIENT=C:\ORACLE\TRACES

E.2.1.1.3 TRACE_FILE_CLIENT
Purpose:

Specifies the name of the client trace file.

Default Value:

SQLNET.TRC

Example:

TRACE_FILE_CLIENT=cli_Connection1.trc

Note:

Ensure that the name you choose for the TRACE_FILE_CLIENT file is different
from the name you choose for the TRACE_FILE_SERVER file.

E.2.1.1.4 TRACE_UNIQUE_CLIENT
Purpose:

Appendix E
Basic Debugging Procedures

E-9

Gives each client-side trace a unique name to prevent each trace file from being
overwritten with the next occurrence of a client trace. The PID is attached to the end of
the file name.

Default Value:

OFF

Example:

TRACE_UNIQUE_CLIENT = ON

E.2.1.2 Server-Side Tracing
Set the following parameters in the SQLNET.ORA file on the server system. Each
connection will generate a separate file with a unique file name.

Note:

Starting from Oracle Database 12c Release 1 (12.1), Oracle recommends
you to use the configuration parameters present in the new XML
configuration file oraaccess.xml instead of the OCI-specific configuration
parameters present in the sqlnet.ora file. However, the configuration
parameters present in the sqlnet.ora file are still supported.

E.2.1.2.1 TRACE_LEVEL_SERVER
Purpose:

Turns tracing on or off to a certain specified level.

Default Value:

0 or OFF

Available Values:

• 0 or OFF - No trace output

• 4 or USER - User trace information

• 10 or ADMIN - Administration trace information

• 16 or SUPPORT - WorldWide Customer Support trace information

Example:

TRACE_LEVEL_SERVER=10

E.2.1.2.2 TRACE_DIRECTORY_SERVER
Purpose:

Specifies the destination directory of the trace file.

Default Value:

ORACLE_HOME/network/trace

Appendix E
Basic Debugging Procedures

E-10

Example:

TRACE_DIRECTORY_SERVER=/oracle/traces

E.2.1.2.3 TRACE_FILE_SERVER
Purpose:

Specifies the name of the server trace file.

Default Value:

SERVER.TRC

Example:

TRACE_FILE_SERVER= svr_Connection1.trc

Note:

Ensure that the name you choose for the TRACE_FILE_SERVER file is different
from the name you choose for the TRACE_FILE_CLIENT file.

E.2.2 Third Party Debugging Tools
You can use tools such as JDBCSpy and JDBCTest from Intersolv to troubleshoot at
the JDBC API level. These tools are similar to ODBC Spy and ODBC Test tools.

Appendix E
Basic Debugging Procedures

E-11

Index

A
AC, 29-1
Accessing PL/SQL Associative Arrays, 4-5
ANYDATA, 4-18
ANYTYPE, 4-18
application continuity, 29-1

configuring Oracle database, 29-5
configuring Oracle JDBC, 29-2
delaying the reconnection, 29-15
disabling replay, 29-20
identifying request boundaries, 29-9
logical transaction identifier, 28-1
registering a connection callback, 29-10
retaining mutable values, 29-17

ARRAY
objects, creating, 16-7

arrays
defined, 16-1
getting, 16-11
named, 16-1
passing to callable statement, 16-14
retrieving from a result set, 16-8
retrieving partial arrays, 16-10
using type maps, 16-14
working with, 16-1

at-most-once execution, 28-1
authentication (security), 9-4
auto-commit, 2-13
auto-commit mode

disabling, C-2
result set behavior, C-2

B
batch jobs, authenticating users in, 9-25
batch updates--see update batching, 21-1
BFILE

class, 4-7
defined, 12-8

BFILE locator, selecting, 4-8
BLOB

class, 4-7
locators

selecting, 4-8

branch qualifier (distributed transactions), 33-13

C
CachedRowSet, 18-6
caching, client-side

Oracle use for scrollable result sets, 17-1
callable statement

using getOracleObject() method, 11-8
cancelling

SQL statements, E-2
casting return values, 11-11
catalog arguments (DatabaseMetaData), A-16
CHAR columns

using setFixedCHAR() to match in WHERE,
11-15

character sets, 4-13
checksums

code example, 9-8
setting parameters in Java, 9-8
support by OCI drivers, 9-6
support by Thin driver, 9-7

CLOB
class, 4-7
locators, selecting, 4-8

close method, 20-12
close() method, E-1
collections

defined, 16-1
collections (nested tables and arrays), 16-6
column types

defining, 21-12
redefining, 21-9

commit a distributed transaction branch, 33-9
commit changes to database, 2-13
CONNECT / feature, 9-25
connection

closing, 2-15
opening, 2-8

connection properties, 8-7
put() method, 8-10

connections
read-only, C-6

constants for SQL types, 4-25

Index-1

CursorName
limitations, A-15

cursors, E-1
custom collection classes

defined, 16-2
custom Java classes, 4-3

defined, 13-1
custom object classes

creating, 13-6
defined, 13-1

custom reference classes
defined, 15-1

D
data conversions, 11-4

LONG, 12-3
LONG RAW, 12-3

data sources
creating and connecting (with JNDI), 8-6
creating and connecting (without JNDI), 8-5
Oracle implementation, 8-2
properties, 8-2
standard interface, 8-2

data streaming
avoiding, 12-6

data type mappings, 11-1
data types

Java, 11-1
Java native, 11-1
JDBC, 11-1
Oracle SQL, 11-1

database
connecting

with server-side internal driver, 7-1
connection testing, 2-5

Database Resident Connection Pooling, 24-1
APIs, 24-7
DRCP, 24-1
enabling

client side, 24-3
server side, 24-2

sharing across multiple connections, 24-4
tagging, 24-4

database specifiers, 8-11
database URL

including userid and password, 2-8
database URL, specifying, 2-8
database URLs

and database specifiers, 8-11
DatabaseMetaData calls, A-16
datasources, 8-1

and JNDI, 8-6
DATE class, 4-8
DBOP tag, 3-13

debugging JDBC programs, E-7
defaultConnection() method, 7-1
detachServerConnection, 24-7
distributed transaction ID component, 33-13
distributed transactions

branch qualifier, 33-13
check for same resource manager, 33-9
commit a transaction branch, 33-9
components and scenarios, 33-2
concepts, 33-2
distributed transaction ID component, 33-13
end a transaction branch, 33-9
example of implementation, 33-16
forget, 33-9
global transaction identifier, 33-13
ID format identifier, 33-13
obtain the list of transaction brances during

recovery, 33-9
Oracle XA connection implementation, 33-7
Oracle XA data source implementation, 33-6
Oracle XA ID implementation, 33-13
Oracle XA optimizations, 33-16
Oracle XA resource implementation, 33-8
overview, 33-1
prepare a transaction branch, 33-9
roll back a transaction branch, 33-9
start a transaction branch, 33-9
transaction branch ID component, 33-13
XA connection interface, 33-7
XA data source interface, 33-6
XA error handling, 33-16
XA exception classes, 33-14
XA ID interface, 33-13
XA resource functionality, 33-9
XA resource interface, 33-8

DML Returning, 4-4, 4-27
example, 4-29
limitations, 4-30
Oracle-specific APIs, 4-28
running statements, 4-29

Double.NaN
restrictions on use, 4-8

DRCP, 24-1

E
encryption

code example, 9-8
overview, 9-5
setting parameters in Java, 9-8
support by OCI drivers, 9-6
support by Thin driver, 9-7

end a distributed transaction branch, 33-9
Enterprise Java Beans (EJB), 18-8

Index

Index-2

environment variables
specifying, 2-3

errors
general JDBC message structure, D-1
general JDBC messages, listed, D-1
processing exceptions, 2-28
TTC messages, listed, D-13

explicit Statement caching
definition of, 20-3

extensions to JDBC, Oracle, 4-1, 11-1, 13-1,
15-1, 16-1, 21-1

external changes (result set)
defined, 17-6
visibility vs. detection, 17-7

external file
defined, 12-8

F
fetch direction in result sets, 17-5
fetch size, result sets, 17-4
FilteredRowSet, 18-12
finalizer methods, E-1
Firewalls, using with JDBC, E-4
Float.NaN

restrictions on use, 4-8
floating-point compliance, A-15
format identifier, transaction ID, 33-13
function call syntax, JDBC escape syntax, A-14

G
getBinaryStream() method, 12-4
getBytes() method, 12-5
getColumns, 2-17
getConnection() method, 7-1
getCursorName() method

limitations, A-15
getLogicalTransactionId method, 28-3
getMoreResultSet(int), 2-19
getObject() method

for ORAData objects, 13-13
return types, 11-8

getOracleObject() method
return types, 11-7, 11-8
using in callable statement, 11-8
using in result set, 11-8

getStatementCacheSize() method
code example, 20-6

getXXX() methods
casting return values, 11-11
for specific data types, 11-10

global transaction identifier (distributed
transactions), 33-13

global transactions, 33-1

globalization, 19-1
using, 19-1

I
IEEE 754 floating-point compliance, A-15
implicit Statement caching

definition of, 20-2
Least Recently Used (LRU) algorithm, 20-3

installation
directories and files, 2-2
verifying on the client, 2-2

Instant Client feature, 6-2
integrity

code example, 9-8
overview, 9-5
setting parameters in Java, 9-8
support by OCI drivers, 9-6
support by Thin driver, 9-7

internal changes (result set)
defined, 17-6

isColumnInvisible, 2-16
isSameRM() (distributed transactions), 33-9

J
Java

compiling and running, 2-5
data types, 11-1
native data types, 11-1
stored procedures, 2-28
stream data, 12-1

Java Naming and Directory Interface (JNDI), 8-1
Java Sockets, 1-1
Java Virtual Machine (JVM), 7-1
java.sql.Connection interface

close method, 20-12
java.sql.Statement interface

close method, 20-12
java.util.Properties, 23-5
JDBC

and IDEs, 1-5
basic program, 2-7
data types, 11-1
defined, 1-1
importing packages, 2-8
limitations of Oracle extensions, A-15
sample files, 2-5
testing, 2-5
version support, 3-1

JDBC 2.0 support
data type support, 3-2
extended feature support, 3-2
introduction, 3-1
JDK 1.2.x vs. JDK 1.1.x, 3-1, 3-2

Index

3

JDBC 2.0 support (continued)
standard feature support, 3-2

JDBC drivers
choosing a driver for your needs, 1-3
common problems, E-1
determining driver version, 2-5
introduction, 1-1
JDBC escape syntax, A-9

JDBC escape syntax, A-9
function call syntax, A-14
LIKE escape characters, A-13
outer joins, A-14
scalar functions, A-12
time and date literals, A-10
translating to SQL example, A-14

JdbcCheckup program, 2-5
JDBCRowSet, 18-9
JDBCSpy, E-11
JDBCTest, E-11
JDeveloper, 1-5
JDK

versions supported, 1-5
JNDI

and datasources, 8-6
looking up data source, 8-6
overview of Oracle support, 8-1
registering data source, 8-6

JoinRowSet, 18-14
JVM, 7-1

K
KPRB driver

overview, 1-2
relation to the SQL engine, 7-1
session context, 7-3
testing, 7-4
transaction context, 7-3
URL for, 7-3

L
Least Recently Used (LRU) algorithm, 20-3, 23-6
LIKE escape characters, JDBC escape syntax,

A-13
limitations on setBytes() and setString(), use of

streams to avoid, 12-11
LOB

defined, 12-7
logical transaction identifier

LTXID, 28-1
LONG

data conversions, 12-3
LONG RAW

data conversions, 12-3

LRU algorithm, 20-3
LTXID, 28-1

M
memory leaks, E-1
monitoring database operations

DBOP, 3-12
setClientInfo, 3-12

N
named arrays, 16-1

defined, 16-6
nativeXA, 8-4
network events, trapping, E-8
NLS. See globalization, 19-1
NULL

testing for, 11-6
NUMBER class, 4-8

O
object references

accessing object values, 15-3, 15-4
described, 15-1
passing to prepared statements, 15-3
retrieving, 15-2
retrieving from callable statement, 15-3
updating object values, 15-3, 15-4

OCI driver
described, 1-2

ODBCSpy, E-11
ODBCTest, E-11
optimization, performance, C-2
Oracle Advanced Security

support by JDBC, 9-2
Oracle data types

using, 11-1
Oracle extensions, 4-1

data type support, 4-2
limitations, A-15

catalog arguments to DatabaseMetaData
calls, A-16

CursorName, A-15
IEEE 754 floating-point compliance, A-15
JDBC outer join escapes, A-15
read-only connection, C-6
SQLWarning class, A-16

object support, 4-3
result sets, 11-6
statements, 11-6
to JDBC, 4-1, 11-1, 13-1, 15-1, 16-1, 21-1

Index

Index-4

Oracle objects
and JDBC, 13-1
Java classes which support, 13-3
mapping to custom object classes, 13-6
reading data by using SQLData interface,

13-10
working with, 13-1
writing data by using SQLData interface,

13-11
Oracle SQL data types, 11-1
oracle.jdbc., Oracle JDBC extensions, 2-8
oracle.jdbc.LogicalTransactionIdEventListener

interface, 28-4
oracle.jdbc.OracleCallableStatement interface,

4-24
oracle.jdbc.OracleConnection interface, 4-23
oracle.jdbc.OraclePreparedStatement interface,

4-24
oracle.jdbc.OracleResultSet interface, 4-25
oracle.jdbc.OracleResultSetMetaData interface,

4-25
oracle.jdbc.OracleSql class, A-14
oracle.jdbc.OracleStatement interface, 4-24
oracle.jdbc.OracleTypes class, 4-25
oracle.jdbc.xa package and subpackages, 33-5
oracle.sql.ARRAY class

methods for Java primitive types, 16-5
oracle.sql.BFILE class, 4-7
oracle.sql.BLOB class, 4-7
oracle.sql.CLOB class, 4-7
oracle.sql.data types

support, 4-6
oracle.sql.DATE class, 4-8
oracle.sql.NUMBER class, 4-8
oracle.sql.RAW class, 4-8
oracle.sql.STRUCT class, 4-5
OracleCallableStatement interface, 4-24
OracleCallableStatement object, 20-2, 20-3
OracleConnection class, 4-23
OracleData interface

advantages, 13-6
OracleDataSource class, 8-2
OraclePreparedStatement interface, 4-24
OraclePreparedStatement object, 20-2, 20-3
OracleResultSet interface, 4-25
OracleResultSetMetaData interface, 4-25
OracleStatement interface, 4-24
OracleTypes class, 4-25
OracleXAConnection class, 33-7
OracleXADataSource class, 33-6
OracleXAResource class, 33-8
OracleXid class, 33-13
ORAData interface

additional uses, 13-16
reading data, 13-14

ORAData interface (continued)
writing data, 13-15

orai18n.jar file, 19-2
outer joins, JDBC escape syntax, A-14

P
password, specifying, 2-8
PDA, 18-8
performance enhancements, standard vs.

Oracle, 3-2
performance extensions

defining column types, 21-12
performance optimization, C-2
Personal Digital Assistant (PDA), 18-8
PL/SQL

stored procedures, 2-28
PL/SQL Associative Arrays, 4-31
prefetching rows, 21-9

suggested default, 21-11
prepare a distributed transaction branch, 33-9
put() method

for Properties object, 8-10

R
RAW class, 4-8
recover (distributed transactions), 33-9
REF CURSORs, 4-16
refetching rows into a result set, 17-5
registerConnectionInitializationCallback, 29-12
Remote Method Invocation (RMI), 18-8
resource managers, 33-2
result set

auto-commit mode, C-2
metadata, 4-25
Oracle extensions, 11-6
using getOracleObject() method, 11-8

result set enhancements
downgrade rules, 17-2
fetch size, 17-4
limitations, 17-2
Oracle scrollability requirements, 17-1
Oracle updatability requirements, 17-1
refetching rows, 17-5
summary of visibility of changes, 17-7
visibility vs. detection of external changes,

17-7
result set fetch size, 17-4
Result Set Holdability, 3-6
result set object

closing, 2-11
result set, processing, 2-10
Retrieval of Auto-Generated Keys, 3-4

Index

5

return types
for getXXX() methods, 11-11
getObject() method, 11-8
getOracleObject() method, 11-8

return values
casting, 11-11

RMI, 18-8
roll back a distributed transaction branch, 33-9
roll back changes to database, 2-13
row prefetching

and data streams, 12-12
ROWID class

defined, 4-14
ROWID, use for result set updates, 17-1
RowSet

events and event listeners, 18-3
overview, 18-1
properties, 18-2
traversing, 18-4

S
savepoints

transaction, 3-3
scalar functions, JDBC escape syntax, A-12
SCAN

backward compatibility, 32-3
configuring the database, 32-1
connection load balancing, 32-2
maximum availability architecture

environment, 32-5
Oracle connection manager, 32-5
overview, 32-1
version, 32-3

Schema Naming, 4-4
scripts, authenticating users in, 9-25
scroll-sensitive result sets

limitations, 17-2
scrollable result sets

fetch direction, 17-5
implementation of scroll-sensitivity, 17-8
refetching rows, 17-5
visibility vs. detection of external changes,

17-7
security

authentication, 9-4
encryption, 9-5
integrity, 9-5
Oracle Advanced Security support, 9-2

server-side internal driver
connection to database, 7-1

server-side Thin driver, overview, 1-2
session context

for KPRB driver, 7-3

setBytes() limitations, using streams to avoid,
12-11

setCursorName() method, A-15
setDisableStmtCaching() method, 20-7
setEscapeProcessing() method, A-10
setFixedCHAR() method, 11-15
setNull(), 11-6
setObejct() method, 11-12
setObject() method

for STRUCT objects, 13-4
setOracleObject() method, 11-12
setString() limitations, using streams to avoid,

12-11
setXXX() methods, for specific data types, 11-12
Solaris

shared libraries, 33-22
specifiers

database, 8-11
SQL

data converting to Java data types, 11-4
types, constants for, 4-25

SQL engine
relation to the KPRB driver, 7-1

SQL syntax (Oracle), A-10
SQLData interface

advantages, 13-6
reading data from Oracle objects, 13-10
writing data from Oracle objects, 13-11

SQLWarning class, limitations, A-16
start a distributed transaction branch, 33-9
Statement caching

explicit
definition of, 20-3

implicit
definition of, 20-2
Least Recently Used (LRU) algorithm,

20-3
Statement object

closing, 2-11
statement.cancel(), E-2
statements

Oracle extensions, 11-6
stopping

statement execution, E-2
stored procedures

Java, 2-28
PL/SQL, 2-28

stream data, 12-1
CHAR columns, 12-7
closing, 12-10
example, 12-4
external files, 12-7
LOBs, 12-7
LONG columns, 12-2
LONG RAW columns, 12-2

Index

Index-6

stream data (continued)
multiple columns, 12-8
precautions, 12-10
RAW columns, 12-7
row prefetching, 12-12
use to avoid setBytes() and setString()

limitations, 12-11
VARCHAR columns, 12-7

stream data column
bypassing, 12-9

STRUCT class, 4-5
STRUCT object

retrieving, 13-3
retrieving attributes as oracle.sql types, 13-3

SYS.ANYDATA, 4-18
SYS.ANYTYPE, 4-18

T
TAF, definition of, 31-1
TCP/IP protocol, 8-14
testing

for NULL values, 11-6
Thin driver

overview, 1-1
server-side, overview, 1-2

time and date literals, JDBC escape syntax, A-10
trace facility, E-8
trace parameters

client-side, E-8
server-side, E-10

transaction branch, 33-1
transaction branch ID component, 33-13
transaction context

for KPRB driver, 7-3
transaction guard, 28-1

at-most-once execution, 28-1
logical transaction identifier, 28-1

transaction IDs (distributed transactions), 33-3
transaction managers, 33-2
transaction savepoints, 3-3
transactions

switching between local and global, 33-4
Transparent Application Failover (TAF), definition

of, 31-1
TTC error messages, listed, D-13
type map, 11-7

adding entries, 13-8
and STRUCTs, 13-9
creating a new map, 13-9
used with arrays, 16-10
using with arrays, 16-14

type map (SQL to Java), 13-6

type maps
relationship to database connection, 7-3

U
unicode data, 4-10
unregisterConnectionInitializationCallback

method, 29-13
updatable result sets

limitations, 17-2
refetching rows, 17-5
update conflicts, 17-4

update batching (standard model)
adding to batch, 21-2
clearing the batch, 21-5
committing changes, 21-4
error handling, 21-7
example, 21-5
executing the batch, 21-3
intermixing batched and non-batched, 21-7
overview, 21-2
update counts, 21-5
update counts upon error, 21-7

update conflicts in result sets, 17-4
update counts

standard update batching, 21-5
upon error (standard batching), 21-7

URLs
for KPRB driver, 7-3

userid, specifying, 2-8

W
WebRowSet, 18-10
window, scroll-sensitive result sets, 17-8

X
XA

connection implementation, 33-7
connections (definition), 33-3
data source implementation, 33-6
data sources (definition), 33-2
definition, 33-2
error handling, 33-16
example of implementation, 33-16
exception classes, 33-14
Oracle optimizations, 33-16
Oracle transaction ID implementation, 33-13
resource implementation, 33-8
resources (definition), 33-3
transaction ID interface, 33-13

Index

7

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database JDBC Developer's Guide
	Changes in Oracle Database 19c
	New Features
	Deprecated Features

	Part I Overview
	1 Introducing JDBC
	1.1 Overview of Oracle JDBC Drivers
	1.2 Choosing the Appropriate Driver
	1.3 Feature Differences Between JDBC OCI and Thin Drivers
	1.4 Environments and Support
	1.4.1 Supported JDK and JDBC Versions
	1.4.2 JNI and Java Environments
	1.4.3 JDBC and IDEs

	1.5 Feature List

	2 Getting Started
	2.1 Version Compatibility for Oracle JDBC Drivers
	2.2 Verifying a JDBC Client Installation
	2.2.1 Checking the Installed Directories and Files
	2.2.2 Checking the Environment Variables
	2.2.3 Ensuring that the Java Code Can Be Compiled and Run
	2.2.4 Determining the Version of the JDBC Driver
	2.2.5 Testing the JDBC and Database Connection

	2.3 Basic Steps in JDBC
	2.3.1 Importing Packages
	2.3.2 Opening a Connection to a Database
	2.3.3 Creating a Statement Object
	2.3.4 Running a Query and Retrieving a Result Set Object
	2.3.5 Processing the Result Set Object
	2.3.6 Closing the Result Set and Statement Objects
	2.3.7 Making Changes to the Database
	2.3.8 About Committing Changes
	2.3.8.1 Changing Commit Behavior

	2.3.9 Closing the Connection

	2.4 Sample: Connecting, Querying, and Processing the Results
	2.5 Support for Invisible Columns
	2.6 Support for Verifying JSON Data
	2.7 Support for Implicit Results
	2.8 Support for Lightweight Connection Validation
	2.9 Support for Deprioritization of Database Nodes
	2.10 Support for Oracle Connection Manager in Traffic Director Mode
	2.10.1 Modes of Running Oracle Connection Manager in Traffic Director Mode
	2.10.2 Benefits of Oracle Connection Manager in Traffic Director Mode
	2.10.3 Restrictions for Oracle Connection Manager in Traffic Director Mode

	2.11 Stored Procedure Calls in JDBC Programs
	2.11.1 PL/SQL Stored Procedures
	2.11.2 Java Stored Procedures

	2.12 About Processing SQL Exceptions

	Part II Oracle JDBC
	3 JDBC Standards Support
	3.1 Support for JDBC 2.0 Standard
	3.1.1 Data Type Support
	3.1.2 Standard Feature Support
	3.1.3 Extended Feature Support
	3.1.4 Standard versus Oracle Performance Enhancement APIs

	3.2 Support for JDBC 3.0 Standard
	3.2.1 Overview of Transaction Savepoints
	3.2.1.1 About Creating a Savepoint
	3.2.1.2 About Rolling Back to a Savepoint
	3.2.1.3 About Releasing a Savepoint
	3.2.1.4 About Checking Savepoint Support
	3.2.1.5 Savepoint Notes

	3.2.2 Retrieval of Auto-Generated Keys
	3.2.2.1 java.sql.Statement
	3.2.2.2 Sample Code
	3.2.2.3 Limitations of Auto-Generated Keys

	3.2.3 JDBC 3.0 LOB Interface Methods
	3.2.4 Result Set Holdability

	3.3 Support for JDBC 4.0 Standard
	3.3.1 Wrapper Pattern Support
	3.3.2 SQLXML Type
	3.3.3 Enhanced Exception Hierarchy and SQLException
	3.3.4 The RowId Data Type
	3.3.5 LOB Creation
	3.3.6 National Language Character Set Support

	3.4 Support for JDBC 4.1 Standard
	3.4.1 setClientInfo Method
	3.4.2 getObject Method

	3.5 Support for JDBC 4.2 Standard

	4 Oracle Extensions
	4.1 Overview of Oracle Extensions
	4.2 Features of the Oracle Extensions
	4.2.1 Database Management Using JDBC
	4.2.2 Support for Oracle Data Types
	4.2.3 Support for Oracle Objects
	4.2.4 Support for Schema Naming
	4.2.5 DML Returning
	4.2.6 PL/SQL Associative Arrays

	4.3 Oracle JDBC Packages
	4.3.1 Package oracle.sql
	4.3.2 Package oracle.jdbc

	4.4 Oracle Character Data Types Support
	4.4.1 SQL CHAR Data Types
	4.4.2 SQL NCHAR Data Types
	4.4.3 Class oracle.sql.CHAR

	4.5 Additional Oracle Type Extensions
	4.5.1 Oracle ROWID Type
	4.5.2 Oracle REF CURSOR Type Category
	4.5.3 Oracle BINARY_FLOAT and BINARY_DOUBLE Types
	4.5.4 Oracle SYS.ANYTYPE and SYS.ANYDATA Types
	4.5.5 The oracle.jdbc Package
	4.5.5.1 Interface oracle.jdbc.OracleConnection
	4.5.5.2 Interface oracle.jdbc.OracleStatement
	4.5.5.3 Interface oracle.jdbc.OraclePreparedStatement
	4.5.5.4 Interface oracle.jdbc.OracleCallableStatement
	4.5.5.5 Interface oracle.jdbc.OracleResultSet
	4.5.5.6 Interface oracle.jdbc.OracleResultSetMetaData
	4.5.5.7 Class oracle.jdbc.OracleTypes

	4.6 DML Returning
	4.6.1 Oracle-Specific APIs
	4.6.2 About Running DML Returning Statements
	4.6.3 Example of DML Returning
	4.6.4 Limitations of DML Returning

	4.7 Accessing PL/SQL Associative Arrays

	5 Features Specific to JDBC Thin
	5.1 Overview of JDBC Thin Client
	5.2 Additional Features Supported
	5.2.1 Default Support for Native XA
	5.2.2 Support for Transaction Guard
	5.2.3 Support for Application Continuity

	6 Features Specific to JDBC OCI Driver
	6.1 OCI Connection Pooling
	6.2 Transparent Application Failover
	6.3 OCI Native XA
	6.4 OCI Instant Client
	6.4.1 Overview of Instant Client
	6.4.2 OCI Instant Client Shared Libraries
	6.4.3 Benefits of Instant Client
	6.4.4 JDBC OCI Instant Client Installation Process
	6.4.5 Usage of Instant Client
	6.4.6 About Patching Instant Client Shared Libraries
	6.4.7 Regeneration of Data Shared Library and ZIP files
	6.4.8 Database Connection Names for OCI Instant Client
	6.4.9 Environment Variables for OCI Instant Client

	6.5 About Instant Client Light (English)
	6.5.1 Data Shared Library for Instant Client Light (English)
	6.5.2 Globalization Settings
	6.5.3 Operation
	6.5.4 Installing Instant Client Light (English)

	7 Server-Side Internal Driver
	7.1 Overview of the Server-Side Internal Driver
	7.2 Connecting to the Database
	7.3 About Session and Transaction Context
	7.4 Testing JDBC on the Server
	7.5 Loading an Application into the Server
	7.5.1 Using the Loadjava Utility
	7.5.2 Using the JVM Command Line

	Part III Connection and Security
	8 Data Sources and URLs
	8.1 About Data Sources
	8.1.1 Overview of Oracle Data Source Support for JNDI
	8.1.2 Features and Properties of Data Sources
	8.1.3 Creating a Data Source Instance and Connecting
	8.1.4 Creating a Data Source Instance, Registering with JNDI, and Connecting
	8.1.5 Supported Connection Properties
	8.1.6 About Using Roles for SYS Login
	8.1.7 Configuring Database Remote Login
	8.1.8 Using Bequeath Connection and SYS Logon
	8.1.9 Setting Properties for Oracle Performance Extensions
	8.1.10 Support for Network Data Compression

	8.2 Database URLs and Database Specifiers
	8.2.1 Support for Internet Protocol Version 6
	8.2.2 Support for HTTPS Proxy Configuration
	8.2.3 Database Specifiers
	8.2.4 Thin-style Service Name Syntax
	8.2.5 Support for Delay in Connection Retries
	8.2.6 TNSNames Alias Syntax
	8.2.7 LDAP Syntax

	9 JDBC Client-Side Security Features
	9.1 Support for Oracle Advanced Security
	9.1.1 Overview of Oracle Advanced Security
	9.1.2 JDBC OCI Driver Support for Oracle Advanced Security
	9.1.3 JDBC Thin Driver Support for Oracle Advanced Security

	9.2 Support for Login Authentication
	9.3 Support for Strong Authentication
	9.4 Support for Data Encryption and Integrity
	9.4.1 Overview of JDBC Support for Data Encryption and Integrity
	9.4.2 JDBC OCI Driver Support for Encryption and Integrity
	9.4.3 JDBC Thin Driver Support for Encryption and Integrity
	9.4.4 Setting Encryption and Integrity Parameters in Java

	9.5 Support for SSL
	9.5.1 Overview of JDBC Support for SSL
	9.5.2 About Managing Certificates and Wallets
	9.5.3 About Keys and certificates containers
	9.5.4 Database Connectivity Over TLS Version 1.2 Using JDBC Thin and JKS
	9.5.5 Automatic SSL Connection Configuration
	9.5.5.1 Provider Resolution
	9.5.5.2 Automatic Key Store Type (KSS) Resolution

	9.5.6 Support for Default SSL Context
	9.5.7 Support for Key Store Service

	9.6 Support for Kerberos
	9.6.1 Overview of JDBC Support for Kerberos
	9.6.2 Configuring Windows to Use Kerberos
	9.6.3 Configuring Oracle Database to Use Kerberos
	9.6.4 Code Example for Using Kerberos

	9.7 Support for RADIUS
	9.7.1 Overview of JDBC Support for RADIUS
	9.7.2 Configuring Oracle Database to Use RADIUS
	9.7.3 Code Example for Using RADIUS

	9.8 About Secure External Password Store

	10 Proxy Authentication
	10.1 About Proxy Authentication
	10.2 Types of Proxy Connections
	10.3 Creating Proxy Connections
	10.4 Closing a Proxy Session
	10.5 Caching Proxy Connections
	10.6 Limitations of Proxy Connections

	Part IV Data Access and Manipulation
	11 Accessing and Manipulating Oracle Data
	11.1 Data Type Mappings
	11.1.1 Table of Mappings
	11.1.2 Notes Regarding Mappings

	11.2 Data Conversion Considerations
	11.2.1 Standard Types Versus Oracle Types
	11.2.2 About Converting SQL NULL Data
	11.2.3 About Testing for NULLs

	11.3 Result Set and Statement Extensions
	11.4 Comparison of Oracle get and set Methods to Standard JDBC
	11.4.1 Standard getObject Method
	11.4.2 Oracle getOracleObject Method
	11.4.3 Summary of getObject and getOracleObject Return Types
	11.4.4 Other getXXX Methods
	11.4.4.1 Return Types of getXXX Methods
	11.4.4.2 Special Notes about getXXX Methods

	11.4.5 Data Types For Returned Objects from getObject and getXXX
	11.4.6 The setObject and setOracleObject Methods
	11.4.7 Other setXXX Methods
	11.4.7.1 Input Data Binding
	11.4.7.2 Method setFixedCHAR for Binding CHAR Data into WHERE Clauses

	11.5 Using Result Set Metadata Extensions
	11.6 About Using SQL CALL and CALL INTO Statements

	12 Java Streams in JDBC
	12.1 Overview of Java Streams
	12.2 About Streaming LONG or LONG RAW Columns
	12.2.1 Overview of Streaming LONG or LONG RAW Columns
	12.2.2 LONG RAW Data Conversions
	12.2.3 LONG Data Conversions
	12.2.4 Examples:Streaming LONG RAW Data
	12.2.5 About Avoiding Streaming for LONG or LONG RAW

	12.3 About Streaming CHAR, VARCHAR, or RAW Columns
	12.4 About Streaming LOBs and External Files
	12.5 Relation Between Data Streaming and Multiple Columns
	12.6 Closing a Stream
	12.7 Notes and Precautions on Streams
	12.7.1 About Streaming Data Precautions
	12.7.2 About Using Streams to Avoid Limits on setBytes and setString
	12.7.3 Relation Between Streaming and Row Prefetching

	13 Working with Oracle Object Types
	13.1 About Mapping Oracle Objects
	13.2 About Using the Default STRUCT Class for Oracle Objects
	13.2.1 Overview of Using the Struct Class
	13.2.2 Retrieving STRUCT Objects and Attributes
	13.2.3 About Creating STRUCT Objects
	13.2.4 Binding STRUCT Objects into Statements
	13.2.5 STRUCT Automatic Attribute Buffering

	13.3 About Creating and Using Custom Object Classes for Oracle Objects
	13.3.1 Overview of Creating and Using Custom Object Classes
	13.3.2 Relative Advantages of OracleData versus SQLData
	13.3.3 About Type Maps for SQLData Implementations
	13.3.4 About Creating Type Map and Defining Mappings for a SQLData Implementation
	13.3.4.1 Overview of Creating a Type Map and Defining Mappings
	13.3.4.2 Adding Entries to an Existing Type Map
	13.3.4.3 Creating a New Type Map
	13.3.4.4 About Materializing Object Types not Specified in the Type Map

	13.3.5 About Reading and Writing Data with a SQLData Implementation
	13.3.6 About the OracleData Interface
	13.3.7 About Reading and Writing Data with an OracleData Implementation
	13.3.8 Additional Uses of OracleData

	13.4 Object-Type Inheritance
	13.4.1 About Creating Subtypes
	13.4.2 About Implementing Customized Classes for Subtypes
	13.4.2.1 About Using OracleData for Type Inheritance Hierarchy
	13.4.2.2 About UsingSQLData for Type Inheritance Hierarchy

	13.4.3 About Retrieving Subtype Objects
	13.4.4 Creating Subtype Objects
	13.4.5 Sending Subtype Objects
	13.4.6 Accessing Subtype Data Fields
	13.4.7 Inheritance Metadata Methods

	13.5 About Describing an Object Type
	13.5.1 Functionality for Getting Object Metadata
	13.5.2 Retrieving Object Metadata

	14 Working with LOBs and BFILEs
	14.1 The LOB Data Types
	14.2 Oracle SecureFiles
	14.3 Data Interface for LOBs
	14.3.1 Streamlined Mechanism
	14.3.2 Input
	14.3.3 Output
	14.3.4 CallableSatement and IN OUT Parameter
	14.3.5 Size Limitations

	14.4 LOB Locator Interface
	14.5 About Working With Temporary LOBs
	14.6 About Opening Persistent LOBs with the Open and Close Methods
	14.7 About Working with BFILEs

	15 Using Oracle Object References
	15.1 Oracle Extensions for Object References
	15.2 Retrieving and Passing an Object Reference
	15.2.1 Retrieving an Object Reference from a Result Set
	15.2.2 Retrieving an Object Reference from a Callable Statement
	15.2.3 Passing an Object Reference to a Prepared Statement

	15.3 Accessing and Updating Object Values Through an Object Reference

	16 Working with Oracle Collections
	16.1 Oracle Extensions for Collections
	16.1.1 Overview of Oracle Collections
	16.1.2 Choices in Materializing Collections
	16.1.3 Creating Collections
	16.1.4 Creating Multilevel Collection Types

	16.2 Overview of Collection Functionality
	16.3 ARRAY Performance Extension Methods
	16.3.1 About Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types
	16.3.2 ARRAY Automatic Element Buffering
	16.3.3 ARRAY Automatic Indexing

	16.4 Creating and Using Arrays
	16.4.1 Creating ARRAY Objects
	16.4.2 Retrieving an Array and Its Elements
	16.4.2.1 About Retrieving the Array
	16.4.2.2 Data Retrieval Methods
	16.4.2.3 Comparing the Data Retrieval Methods
	16.4.2.4 Retrieving Elements of a Structured Object Array According to a Type Map
	16.4.2.5 Retrieving a Subset of Array Elements
	16.4.2.6 Retrieving Array Elements into an oracle.sql.Datum Array
	16.4.2.7 About Accessing Multilevel Collection Elements

	16.4.3 Passing Arrays to Statement Objects

	16.5 Using a Type Map to Map Array Elements

	17 Result Set
	17.1 Oracle JDBC Implementation Overview for Result Set Support
	17.2 Resultset Limitations and Downgrade Rules
	17.3 About Avoiding Update Conflicts
	17.4 Row Fetch Size
	17.4.1 Setting the Fetch Size
	17.4.2 Presetting the Fetch Direction

	17.5 About Refetching Rows
	17.6 About Viewing Database Changes Made Internally and Externally
	17.6.1 Visibility versus Detection of External Changes
	17.6.2 Summary of Visibility of Internal and External Changes
	17.6.3 Oracle Implementation of Scroll-Sensitive Result Sets

	18 JDBC RowSets
	18.1 Overview of JDBC RowSets
	18.1.1 RowSet Properties
	18.1.2 Events and Event Listeners
	18.1.3 Command Parameters and Command Execution
	18.1.4 About Traversing RowSets

	18.2 About CachedRowSet
	18.3 About JdbcRowSet
	18.4 About WebRowSet
	18.5 About FilteredRowSet
	18.6 About JoinRowSet

	19 Globalization Support
	19.1 About Providing Globalization Support
	19.2 NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property
	19.3 New Methods for National Character Set Type Data in JDK 6

	Part V Performance and Scalability
	20 Statement and Result Set Caching
	20.1 About Statement Caching
	20.1.1 Basics of Statement Caching
	20.1.2 Implicit Statement Caching
	20.1.3 Explicit Statement Caching

	20.2 About Using Statement Caching
	20.2.1 About Enabling and Disabling Statement Caching
	20.2.2 About Closing a Cached Statement
	20.2.3 About Using Implicit Statement Caching
	20.2.3.1 Methods Used in Statement Allocation and Implicit Statement Caching

	20.2.4 About Using Explicit Statement Caching
	20.2.4.1 Methods Used to Retrieve Explicitly Cached Statements

	20.3 About Reusing Statements Objects
	20.3.1 About Using a Pooled Statement
	20.3.2 About Closing a Pooled Statement

	20.4 About Result Set Caching
	20.4.1 Server-Side Result Set Cache
	20.4.2 Client-Side Result Set Cache
	20.4.2.1 Enabling the Client-Side Result Set Cache
	20.4.2.2 Benefits of Client-Side Result Set Cache
	20.4.2.3 Usage Guidelines in JDBC
	20.4.2.3.1 RESULT_CACHE_MODE Parameter
	20.4.2.3.2 Table Annotations
	20.4.2.3.3 SQL Hints

	21 Performance Extensions
	21.1 Update Batching
	21.1.1 Overview of Update Batching
	21.1.2 Standard Update Batching
	21.1.2.1 Limitations in the Oracle Implementation of Standard Batching
	21.1.2.2 About Adding Operations to the Batch
	21.1.2.3 About Processing the Batch
	21.1.2.4 Row Count per Iteration for Array DMLs
	21.1.2.5 About Committing the Changes in the Oracle Implementation of Standard Batching
	21.1.2.6 About Clearing the Batch
	21.1.2.7 Update Counts in the Oracle Implementation of Standard Batching
	21.1.2.8 Error Handling in the Oracle Implementation of Standard Batching
	21.1.2.9 About Intermixing Batched Statements and Nonbatched Statements

	21.1.3 Premature Batch Flush

	21.2 Additional Oracle Performance Extensions
	21.2.1 About Prefetching LOB Data
	21.2.2 Oracle Row-Prefetching Limitations
	21.2.3 About Defining Column Types
	21.2.4 About Reporting DatabaseMetaData TABLE_REMARKS

	22 Support for Reactive Streams Ingestion
	22.1 Overview of Java library for Reactive Streams Ingestion
	22.2 Architecture of Java Library for Reactive Streams Ingestion
	22.3 Limitations of Java library for Reactive Streams Ingestion

	23 OCI Connection Pooling
	23.1 Background of OCI Driver Connection Pooling
	23.2 Comparison Between OCI Driver Connection Pooling and Shared Servers
	23.3 About Defining an OCI Connection Pool
	23.3.1 Overview of Creating an OCI Connection Pool
	23.3.2 Importing the oracle.jdbc.pool and oracle.jdbc.oci Packages
	23.3.3 Creating an OCI Connection Pool
	23.3.4 Setting the OCI Connection Pool Parameters
	23.3.5 Checking the OCI Connection Pool Status

	23.4 About Connecting to an OCI Connection Pool
	23.5 Sample Code for OCI Connection Pooling
	23.6 Statement Handling and Caching
	23.7 JNDI and the OCI Connection Pool

	24 Database Resident Connection Pooling
	24.1 Overview of Database Resident Connection Pooling
	24.2 Enabling Database Resident Connection Pooling
	24.2.1 Enabling DRCP on the Server Side
	24.2.2 Enabling DRCP on the Client Side

	24.3 About Sharing Pooled Servers Across Multiple Connection Pools
	24.4 DRCP Tagging
	24.5 PL/SQL Callback for Session State Fix Up
	24.6 APIs for Using DRCP

	25 JDBC Support for Database Sharding
	25.1 Overview of Database Sharding for JDBC Users
	25.2 About Building the Sharding Key
	25.3 APIs for Database Sharding Support
	25.3.1 The OracleShardingKey Interface
	25.3.2 The OracleShardingKeyBuilder Interface
	25.3.3 The OracleConnectionBuilder Interface
	25.3.4 Other New Classes and Methods for Database Sharding Support

	25.4 JDBC Sharding Example

	26 Oracle Advanced Queuing
	26.1 Functionality and Framework of Oracle Advanced Queuing
	26.2 Making Changes to the Database
	26.3 AQ Asynchronous Event Notification
	26.4 About Creating Messages
	26.4.1 Creating Messages
	26.4.2 AQ Message Properties
	26.4.3 AQ Message Payload

	26.5 Example: Creating a Message and Setting a Payload
	26.6 Enqueuing Messages
	26.7 Dequeuing Messages
	26.8 Examples: Enqueuing and Dequeuing

	27 Continuous Query Notification
	27.1 Overview of Continuous Query Notification
	27.2 Creating a Registration
	27.2.1 Continuous Query Notification Registration Options

	27.3 Associating a Query with a Registration
	27.4 Notifying Database Change Events
	27.5 Deleting a Registration

	Part VI High Availability
	28 Transaction Guard for Java
	28.1 Overview of Transaction Guard for Java
	28.2 Transaction Guard Support for XA Transactions
	28.3 How to Use Transaction Guard with XA
	28.4 Transaction Guard for Java APIs
	28.4.1 Retrieving the Logical Transaction Identifiers
	28.4.2 Retrieving the Updated Logical Transaction Identifiers
	28.4.2.1 Registering Event Listeners
	28.4.2.2 Unregistering Event Listeners

	28.5 Complete Example:Using Transaction Guard APIs
	28.6 About Using Server-Side Transaction Guard APIs

	29 Application Continuity for Java
	29.1 About Configuring Oracle JDBC for Application Continuity for Java
	29.1.1 Support for Concrete Classes with Application Continuity

	29.2 About Configuring Oracle Database for Application Continuity for Java
	29.3 Application Continuity with DRCP
	29.4 Application Continuity Support for XA Data Source
	29.5 About Identifying Request Boundaries in Application Continuity for Java
	29.6 Support for Transparent Application Continuity
	29.7 Establishing the Initial State Before Application Continuity Replays
	29.7.1 No Callback
	29.7.2 Connection Labeling
	29.7.3 Connection Initialization Callback
	29.7.3.1 Creating an Initialization Callback
	29.7.3.2 Registering an Initialization Callback
	29.7.3.3 Removing or Unregistering an Initialization Callback

	29.7.4 About Enabling FAILOVER_RESTORE

	29.8 About Delaying the Reconnection in Application Continuity for Java
	29.8.1 Configuration Examples Related to Application Continuity for Java
	29.8.1.1 Creating Services on Oracle RAC
	29.8.1.2 Modifying Services on Single-Instance Databases

	29.9 About Retaining Mutable Values in Application Continuity for Java
	29.9.1 Grant and Revoke Interface
	29.9.1.1 Dates and SYS_GUID Syntax
	29.9.1.2 Sequence Syntax
	29.9.1.3 GRANT ALL Statement
	29.9.1.4 Rules for Grants on Mutable Values

	29.10 Application Continuity Statistics
	29.11 About Disabling Replay in Application Continuity for Java
	29.11.1 How to Disable Replay
	29.11.2 When to Disable Replay
	29.11.2.1 Application Calls External Systems that Should not Be Repeated
	29.11.2.2 Application Synchronizes Independent Sessions
	29.11.2.3 Application Uses Time at the Middle-tier in the Execution Logic
	29.11.2.4 Application assumes that ROWIds do not change
	29.11.2.5 Application Assumes that Side Effects Execute Once
	29.11.2.6 Application Assumes that Location Values Do not Change

	29.11.3 Diagnostics and Tracing
	29.11.3.1 Writing Replay Trace to Console
	29.11.3.2 Writing Replay Trace to a File

	30 Oracle JDBC Support for FAN Events
	30.1 Overview of Oracle JDBC Support for FAN events
	30.2 Safe Draining APIs for Planned Maintenance
	30.3 Installation and Configuration of Oracle JDBC Driver for FAN Events Support
	30.4 Example of Oracle JDBC Driver FAN support for Planned Maintenance

	31 Transparent Application Failover
	31.1 Overview of Transparent Application Failover
	31.2 Failover Type Events
	31.3 TAF Callbacks
	31.4 Java TAF Callback Interface
	31.5 Comparison of TAF and Fast Connection Failover

	32 Single Client Access Name
	32.1 Overview of Single Client Access Name
	32.2 About Configuring the Database Using the SCAN
	32.3 How Connection Load Balancing Works Using the SCAN
	32.4 Version and Backward Compatibility
	32.5 Using the SCAN in a Maximum Availability Architecture Environment
	32.6 Using the SCAN With Oracle Connection Manager

	Part VII Transaction Management
	33 Distributed Transactions
	33.1 About Distributed Transactions
	33.1.1 Overview of Distributed Transaction
	33.1.2 Distributed Transaction Components and Scenarios
	33.1.3 Distributed Transaction Concepts
	33.1.4 About Switching Between Global and Local Transactions
	33.1.5 Oracle XA Packages

	33.2 XA Components
	33.2.1 XADatasource Interface and Oracle Implementation
	33.2.2 XAConnection Interface and Oracle Implementation
	33.2.3 XAResource Interface and Oracle Implementation
	33.2.4 OracleXAResource Method Functionality and Input Parameters
	33.2.5 Xid Interface and Oracle Implementation

	33.3 Error Handling and Optimizations
	33.3.1 XAException Classes and Methods
	33.3.2 Mapping Between Oracle Errors and XA Errors
	33.3.3 XA Error Handling
	33.3.4 Oracle XA Optimizations

	33.4 About Implementing a Distributed Transaction
	33.4.1 Summary of Imports for Oracle XA
	33.4.2 Oracle XA Code Sample

	33.5 Native-XA in Oracle JDBC Drivers
	33.5.1 OCI Native XA
	33.5.2 Thin Native XA

	Part VIII Manageability
	34 Database Administration
	34.1 Using the Database Administration Methods
	34.2 Using the startup Method
	34.2.1 Database Startup Options

	34.3 Using the shutdown Method
	34.3.1 Database Shutdown Options
	34.3.2 Standard Database Shutdown Process

	34.4 A Complete Example

	35 Diagnosability in JDBC
	35.1 About Logging Feature of Oracle JDBC Drivers
	35.1.1 Overview of Logging Feature of Oracle JDBC Drivers
	35.1.2 Enabling and Using JDBC Logging
	35.1.2.1 About Configuring the CLASSPATH
	35.1.2.2 Enabling Logging
	35.1.2.3 Configuring Logging
	35.1.2.4 Redirecting the Log Output to a File
	35.1.2.5 Using Loggers
	35.1.2.6 Logging Example

	35.1.3 Enabling or Disabling Feature-Specific Logging at Run Time
	35.1.4 Using the Logging Configuration File for Feature-Specific Logging
	35.1.5 Performance, Scalability, and Security Issues

	35.2 Diagnosability Management

	36 JDBC DMS Metrics
	36.1 Overview of JDBC DMS Metrics
	36.2 About Determining the Type of Metric to Be Generated
	36.3 About Generating the SQLText Metric
	36.4 About Accessing DMS Metrics Using JMX

	Part IX Appendixes
	A JDBC Reference Information
	A.1 Supported SQL-JDBC Data Type Mappings
	A.2 Supported SQL and PL/SQL Data Types
	A.3 About Using PL/SQL Types
	A.4 Using Embedded JDBC Escape Syntax
	A.4.1 Time and Date Literals
	A.4.1.1 Date Literals
	A.4.1.2 Time Literals
	A.4.1.3 Timestamp Literals

	A.4.2 Scalar Functions
	A.4.3 LIKE Escape Characters
	A.4.4 MATCH_RECOGNIZE Clause
	A.4.5 Outer Joins
	A.4.6 Function Call Syntax
	A.4.7 JDBC Escape Syntax to Oracle SQL Syntax Example

	A.5 Oracle JDBC Notes and Limitations
	A.5.1 CursorName
	A.5.2 JDBC Outer Join Escapes
	A.5.3 IEEE 754 Floating Point Compliance
	A.5.4 Catalog Arguments to DatabaseMetaData Calls
	A.5.5 SQLWarning Class
	A.5.6 Executing DDL Statements
	A.5.7 Binding Named Parameters

	B Oracle RAC Fast Application Notification
	B.1 Overview of Oracle RAC Fast Application Notification
	B.2 Installing and Configuring Oracle RAC Fast Application Notification
	B.3 Using Oracle RAC Fast Application Notification
	B.4 Implementing a Connection Pool

	C JDBC Coding Tips
	C.1 JDBC and Multithreading
	C.2 Performance Optimization of JDBC Programs
	C.2.1 Disabling Auto-Commit Mode
	C.2.2 Standard Fetch Size and Oracle Row Prefetching
	C.2.3 About Setting the Session Data Unit Size
	C.2.3.1 About Setting the SDU Size for the Database Server
	C.2.3.2 About Setting the SDU Size for JDBC OCI Client
	C.2.3.3 About Setting the SDU Size for JDBC Thin Client

	C.2.4 JDBC Update Batching
	C.2.5 Statement Caching
	C.2.6 Mapping Between Built-in SQL and Java Types

	C.3 Transaction Isolation Levels and Access Modes in JDBC

	D JDBC Error Messages
	D.1 General Structure of JDBC Error Messages
	D.2 General JDBC Messages
	D.2.1 JDBC Messages Sorted by ORA Number
	D.2.2 JDBC Messages Sorted in Alphabetic Order

	D.3 Native XA Messages
	D.3.1 Native XA Messages Sorted by ORA Number
	D.3.2 Native XA Messages Sorted in Alphabetic Order

	D.4 TTC Messages
	D.4.1 TTC Messages Sorted by ORA Number
	D.4.2 TTC Messages Sorted in Alphabetic Order

	E Troubleshooting
	E.1 Common Problems
	E.1.1 Memory Consumption for CHAR Columns Defined as OUT or IN/OUT Variables
	E.1.2 Memory Leaks and Running Out of Cursors
	E.1.3 Opening More than 16 OCI Connections for a Process
	E.1.4 Using statement.cancel
	E.1.5 Using JDBC with Firewalls
	E.1.6 Frequent Abrupt Disconnection from Server
	E.1.7 Network Adapter Cannot Establish Connection
	E.1.7.1 Oracle Instance Configured with MTS Server Uses Shared Server
	E.1.7.2 JDBC Thin Driver with NIC Card Supporting Both IPv4 and IPv6
	E.1.7.3 Sample Application

	E.2 Basic Debugging Procedures
	E.2.1 Oracle Net Tracing to Trap Network Events
	E.2.1.1 Client-Side Tracing
	E.2.1.1.1 TRACE_LEVEL_CLIENT
	E.2.1.1.2 TRACE_DIRECTORY_CLIENT
	E.2.1.1.3 TRACE_FILE_CLIENT
	E.2.1.1.4 TRACE_UNIQUE_CLIENT

	E.2.1.2 Server-Side Tracing
	E.2.1.2.1 TRACE_LEVEL_SERVER
	E.2.1.2.2 TRACE_DIRECTORY_SERVER
	E.2.1.2.3 TRACE_FILE_SERVER

	E.2.2 Third Party Debugging Tools

	Index

